Imaging is a critically important technology for clinical, translational, cadaveric, and in vivo studies of animal and human disease. Whether the ability to characterize tissue structure or visualize molecular markers in a non-invasive manner, advanced imaging methods have proven to be powerful tools specifically for musculoskeletal applications. Research employing imaging that addresses problems in musculoskeletal injury and repair in humans has a long track record. Further, imaging is recognized to be vital as new evaluation and treatment modalities are developed and used for some of the major degenerative disorders such as osteoporosis and osteoarthritis or traumatic injuries such as fractures. The University of Pennsylvania has one of the most comprehensive imaging facilities in the nation, comprised of a complete range of imaging modalities dedicated to basic and translational research in animals and humans. Moreover, it is staffed by some of the leading scientists in the various imaging modalities. A key objective of the Penn Center for Musculoskeletal Disorders therefore is to provide an on-campus Imaging Core (IC) to musculoskeletal researchers for imaging of both humans and large and small animals. The overall objective of the IC is to develop and utilize a wide range of imaging techniques directed toward problems of musculoskeletal tissue injury and repair.
The Specific Aims are:
Aim 1 : To provide guidance and expertise on the use of imaging for musculoskeletal research through educational enrichment programs and one-on one interactions.
Aim 2 : To provide a range of imaging resources for the study of structure, function and physiology of the musculoskeletal system in laboratory animals and humans.
Aim 3 : To provide pilot funding for development of new projects and collaborations and for investigators to generate preliminary data.

Public Health Relevance

Successful completion of these Aims will significantly enhance the environment and capabilities of researchers at the University of Pennsylvania, leading to novel and innovative approaches to address musculoskeletal disorders and to new collaborations between Core faculty who may not have previously included human and/or animal imaging in their musculoskeletal research programs..

Agency
National Institute of Health (NIH)
Type
Center Core Grants (P30)
Project #
5P30AR050950-09
Application #
8681151
Study Section
Special Emphasis Panel (ZAR1)
Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Heo, Su-Jin; Driscoll, Tristan P; Thorpe, Stephen D et al. (2016) Differentiation alters stem cell nuclear architecture, mechanics, and mechano-sensitivity. Elife 5:
Huegel, Julianne; Kim, Dong Hwa; Cirone, James M et al. (2016) Autologous tendon-derived cell-seeded nanofibrous scaffolds improve rotator cuff repair in an age-dependent fashion. J Orthop Res :
Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H et al. (2016) Multiscale regression modeling in mouse supraspinatus tendons reveals that dynamic processes act as mediators in structure-function relationships. J Biomech 49:1649-57
Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H et al. (2016) Collagen V expression is crucial in regional development of the supraspinatus tendon. J Orthop Res 34:2154-2161
McLeod, Claire M; Mauck, Robert L (2016) High fidelity visualization of cell-to-cell variation and temporal dynamics in nascent extracellular matrix formation. Sci Rep 6:38852
Pardes, A M; Freedman, B R; Fryhofer, G W et al. (2016) Males have Inferior Achilles Tendon Material Properties Compared to Females in a Rodent Model. Ann Biomed Eng 44:2901-10
Heo, Su-Jin; Han, Woojin M; Szczesny, Spencer E et al. (2016) Mechanically Induced Chromatin Condensation Requires Cellular Contractility in Mesenchymal Stem Cells. Biophys J 111:864-74
Tucker, Jennica J; Riggin, Corinne N; Connizzo, Brianne K et al. (2016) Effect of overuse-induced tendinopathy on tendon healing in a rat supraspinatus repair model. J Orthop Res 34:161-6
Saxena, Vishal; Kim, Minwook; Keah, Niobra M et al. (2016) Anatomic Mesenchymal Stem Cell-Based Engineered Cartilage Constructs for Biologic Total Joint Replacement. Tissue Eng Part A 22:386-95
Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P et al. (2016) Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage. Nat Mater 15:477-84

Showing the most recent 10 out of 217 publications