Imaging is a critically important technology for clinical, translational, cadaveric, and in vivo studies of animal and human disease. Whether the ability to characterize tissue structure or visualize molecular markers in a non-invasive manner, advanced imaging methods have proven to be powerful tools specifically for musculoskeletal applications. Research employing imaging that addresses problems in musculoskeletal injury and repair in humans has a long track record. Further, imaging is recognized to be vital as new evaluation and treatment modalities are developed and used for some of the major degenerative disorders such as osteoporosis and osteoarthritis or traumatic injuries such as fractures. The University of Pennsylvania has one of the most comprehensive imaging facilities in the nation, comprised of a complete range of imaging modalities dedicated to basic and translational research in animals and humans. Moreover, it is staffed by some of the leading scientists in the various imaging modalities. A key objective of the Penn Center for Musculoskeletal Disorders therefore is to provide an on-campus Imaging Core (IC) to musculoskeletal researchers for imaging of both humans and large and small animals. The overall objective of the IC is to develop and utilize a wide range of imaging techniques directed toward problems of musculoskeletal tissue injury and repair.
The Specific Aims are:
Aim 1 : To provide guidance and expertise on the use of imaging for musculoskeletal research through educational enrichment programs and one-on one interactions.
Aim 2 : To provide a range of imaging resources for the study of structure, function and physiology of the musculoskeletal system in laboratory animals and humans.
Aim 3 : To provide pilot funding for development of new projects and collaborations and for investigators to generate preliminary data.

Public Health Relevance

Successful completion of these Aims will significantly enhance the environment and capabilities of researchers at the University of Pennsylvania, leading to novel and innovative approaches to address musculoskeletal disorders and to new collaborations between Core faculty who may not have previously included human and/or animal imaging in their musculoskeletal research programs..

National Institute of Health (NIH)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
United States
Zip Code
Reuther, Katherine E; Thomas, Stephen J; Tucker, Jennica J et al. (2015) Overuse activity in the presence of scapular dyskinesis leads to shoulder tendon damage in a rat model. Ann Biomed Eng 43:917-28
Chandra, Abhishek; Lin, Tiao; Tribble, Mary Beth et al. (2014) PTH1-34 alleviates radiotherapy-induced local bone loss by improving osteoblast and osteocyte survival. Bone 67:33-40
Dunkman, Andrew A; Buckley, Mark R; Mienaltowski, Michael J et al. (2014) The injury response of aged tendons in the absence of biglycan and decorin. Matrix Biol 35:232-8
Altman, Allison R; Tseng, Wei-Ju; de Bakker, Chantal M J et al. (2014) A closer look at the immediate trabecula response to combined parathyroid hormone and alendronate treatment. Bone 61:149-57
Smith, Lachlan J; Gorth, Deborah J; Showalter, Brent L et al. (2014) In vitro characterization of a stem-cell-seeded triple-interpenetrating-network hydrogel for functional regeneration of the nucleus pulposus. Tissue Eng Part A 20:1841-9
Dishowitz, Michael I; Zhu, Fengchang; Sundararaghavan, Harini G et al. (2014) Jagged1 immobilization to an osteoconductive polymer activates the Notch signaling pathway and induces osteogenesis. J Biomed Mater Res A 102:1558-67
Culbert, Andria L; Chakkalakal, Salin A; Theosmy, Edwin G et al. (2014) Alk2 regulates early chondrogenic fate in fibrodysplasia ossificans progressiva heterotopic endochondral ossification. Stem Cells 32:1289-300
Freedman, Benjamin R; Sarver, Joseph J; Buckley, Mark R et al. (2014) Biomechanical and structural response of healing Achilles tendon to fatigue loading following acute injury. J Biomech 47:2028-34
Dunkman, Andrew A; Buckley, Mark R; Mienaltowski, Michael J et al. (2014) The tendon injury response is influenced by decorin and biglycan. Ann Biomed Eng 42:619-30
Caro, Adam C; Tucker, Jennica J; Yannascoli, Sarah M et al. (2014) Efficacy of various analgesics on shoulder function and rotator cuff tendon-to-bone healing in a rat (Rattus norvegicus) model. J Am Assoc Lab Anim Sci 53:185-92

Showing the most recent 10 out of 119 publications