Patient-oriented biomedical investigation related to diagnosis, disease mechanisms, monitoring disease activity and new therapeutic approaches in rheumatic disease is the hallmark of the Johns Hopkins Division of Rheumatology. This research is structured around well-established disease-specific Centers of Excellence in scleroderma (Dr. Fred Wigley), lupus (Dr. Michelle Petri), arthritis (Dr. Joan Bathon), and vasculitis (Dr. John Stone). These clinical cohorts are coupled closely with a robust basic science program directed by Drs. Antony Rosen and Livia Casciola-Rosen. In recent years, this program has received outstanding institutional support, enabling significant growth, investment in shared equipment and infrastructure, and the initiation of multiple synergistic projects both within and outside the Division. Our Rheumatic Disease Research Core Center (RDRCC) proposal capitalizes upon the strong biomedical research base within the Division of Rheumatology, as well as additional outstanding talent from the broader scientific community at Johns Hopkins. The Hopkins RDRCC proposal comprises an Administrative Core (Core A) led by Drs. Antony Rosen and John Stone, and includes 2 Scientific Cores: 1) a Bioassay Core (Core B), led by Drs. James Mahoney, Mark Soloski, and Livia Casciola-Rosen;and 2) a Genotyping/Genomics Core (Core C), led by Dr. Kathleen Barnes, designed to foster new research within and beyond the Division's Disease Centers. Core A will promote interdisciplinary research through the cores, provide assistance with financial management, provide information technology solutions to maximize efficiency of translational research, and coordinate program enrichment activities. The Administrative core will also manage the Pilot and Feasibility program. Pilot studies chosen for the first year are tightly linked to the disease Centers and Cores. Pilot #1 will optimize assays to quantify clearance of apoptotic cells directly ex vivo in pediatric SLE patients. Pilot #2 will explore the association of genetic polymorphisms in granzyme B with specific phenotypes in scleroderma. Core B will provide assistance with patient sample acquisition, processing, storage, and distribution, as well as the provision of multiple immunological assays, including FACS, ELISA, immunohistology, and multiplex cytokine assays. Core C will perform, analyze, and interpret gene expression studies in a variety of human disease and control tissues and some mouse models. Core C will also oversee the design, performance and analysis of genetic association studies in well-defined human rheumatic phenotypes.

Public Health Relevance

This Rheumatic Disease Research Core Center provides systems and infrastructure to facilitate efficient research on humans with autoimmune rheumatic diseases. The synergies arising from coupling the diverse and well-resourced research base to the unusually rich collection of prospectively collected data from patients with rheumatic diseases through provision of central Cores provides unprecedented opportunities to enhance and accelerate discovery into the causes, mechanisms, diagnosis, therapy and prevention in these diseases.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-MLB (M1))
Program Officer
Mancini, Marie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Needham, Dale M; Sepulveda, Kristin A; Dinglas, Victor D et al. (2017) Core Outcome Measures for Clinical Research in Acute Respiratory Failure Survivors. An International Modified Delphi Consensus Study. Am J Respir Crit Care Med 196:1122-1130
Darrah, Erika; Kim, AeRyon; Zhang, Xi et al. (2017) Proteolysis by Granzyme B Enhances Presentation of Autoantigenic Peptidylarginine Deiminase 4 Epitopes in Rheumatoid Arthritis. J Proteome Res 16:355-365
Cappelli, Laura C; Naidoo, Jarushka; Bingham 3rd, Clifton O et al. (2017) Inflammatory arthritis due to immune checkpoint inhibitors: challenges in diagnosis and treatment. Immunotherapy 9:5-8
Pinal-Fernandez, Iago; Parks, Cassie; Werner, Jessie L et al. (2017) Longitudinal Course of Disease in a Large Cohort of Myositis Patients With Autoantibodies Recognizing the Signal Recognition Particle. Arthritis Care Res (Hoboken) 69:263-270
Baer, Alan N; Petri, Michelle; Sohn, Jungsan et al. (2017) Reply. Arthritis Care Res (Hoboken) 69:454
Adler, Brittany L; Albayda, Jemima; Shores, Jamie T et al. (2017) Erosive Rheumatoid Arthritis After Bilateral Hand Transplantation. Ann Intern Med 167:216-218
Cappelli, Laura C; Gutierrez, Anna Kristina; Baer, Alan N et al. (2017) Inflammatory arthritis and sicca syndrome induced by nivolumab and ipilimumab. Ann Rheum Dis 76:43-50
Albayda, Jemima; Pinal-Fernandez, Iago; Huang, Wilson et al. (2017) Antinuclear Matrix Protein 2 Autoantibodies and Edema, Muscle Disease, and Malignancy Risk in Dermatomyositis Patients. Arthritis Care Res (Hoboken) 69:1771-1776
Cappelli, Laura C; Shah, Ami A; Bingham 3rd, Clifton O (2017) Immune-Related Adverse Effects of Cancer Immunotherapy- Implications for Rheumatology. Rheum Dis Clin North Am 43:65-78
Turnbull, Alison E; Sepulveda, Kristin A; Dinglas, Victor D et al. (2017) Core Domains for Clinical Research in Acute Respiratory Failure Survivors: An International Modified Delphi Consensus Study. Crit Care Med 45:1001-1010

Showing the most recent 10 out of 108 publications