Genetically engineered mice have become an essential tool in biomedical research. They are crucial tools for studying development of the skin and its appendages. In addition, these mouse models have become indispensible for creating models of human skin disorders, including inherited and aquired skin disorders and skin cancer. Generating transgenic or knockout mice requires specialized skills and expensive equipment. Consequently, very few laboratories have the ability to generate these valuable research models. The Transgenic and Gene Targeting (TGT) Core at the University of Colorado Denver offers a comprehensive set of services which enables investigators to generate genetically engineered mice. These services include the generation of transgenic mice via pronuclear injections, and gene targeting experiments that include the entire process from generating recombinant ES cells to the production of chimeric mice. All that is required from the investigators to initiate these experiments is a transgenic vector or gene targeting vector. Furthermore, our core offers extensive consultation services to help investigators with the development of a research plan, including vector design, animal design, and the analysis of genetically engineered mice. 23 investigators of the Skin Disease Research Core Center (UCD-SDRC) are planning to use our core services to generate mouse models to study skin biology or skin diseases. Core Center support for our core will provide these investigators with subsidized access to the full set of our services, and thus facilitate their research.

Public Health Relevance

The services of the proposed core component (Transgenic and Gene Targeting Core) are essential for the ability of Core Center investigators to generate animal models for skin diseases. Funds provided to the Transgenic and Gene Targeting Core will provide access of Core Center members to subsidized core services such as pronuclear injections to generate transgenic mice and ES cell injections to generate knockout and knockin mice.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-KM-D)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
United States
Zip Code
Ishitsuka, Yosuke; Huebner, Aaron J; Rice, Robert H et al. (2016) Lce1 Family Members Are Nrf2-Target Genes that Are Induced to Compensate for the Loss of Loricrin. J Invest Dermatol 136:1656-63
Liu, Ying; Snedecor, Elizabeth R; Zhang, Xu et al. (2016) Correction of Hair Shaft Defects through Allele-Specific Silencing of Mutant Krt75. J Invest Dermatol 136:45-51
Reynolds, Susan D; Rios, Cydney; Wesolowska-Andersen, Agata et al. (2016) Airway Progenitor Clone Formation Is Enhanced by Y-27632-Dependent Changes in the Transcriptome. Am J Respir Cell Mol Biol 55:323-36
Mukherjee, Nabanita; Lu, Yan; Almeida, Adam et al. (2016) Use of a MCL-1 inhibitor alone to de-bulk melanoma and in combination to kill melanoma initiating cells. Oncotarget :
Tilley, Cynthia; Deep, Gagan; Agarwal, Chapla et al. (2016) Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation. Mol Carcinog 55:3-14
Zhang, Lei; Ferreyros, Michael; Feng, Weiguo et al. (2016) Defects in Stratum Corneum Desquamation Are the Predominant Effect of Impaired ABCA12 Function in a Novel Mouse Model of Harlequin Ichthyosis. PLoS One 11:e0161465
Kohler, Stephanie L; Pham, Michael N; Folkvord, Joy M et al. (2016) Germinal Center T Follicular Helper Cells Are Highly Permissive to HIV-1 and Alter Their Phenotype during Virus Replication. J Immunol 196:2711-22
Jin, Ying; Andersen, Genevieve; Yorgov, Daniel et al. (2016) Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet 48:1418-1424
Du, L; Chen, X; Cao, Y et al. (2016) Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene 35:4641-52
Morton, J J; Bird, G; Keysar, S B et al. (2016) XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer. Oncogene 35:290-300

Showing the most recent 10 out of 48 publications