A fundamental need of investigators studying skin disease is to carry out a number of different molecular genetic technologies, including the ability to map, identify, and characterize genes involve in skin differentiation, skin development, skin damage, and skin disease. These analyses require access to specialized high-cost equipment and highly trained personnel with specialized expertise, beyond what is typically available in most individual research laboratories. The objective of the UCD-SDRC Molecular Genetic Analysis Core is to provide investigators with the necessary tools and expertise for both large-scale and smaller-scale, user-defined genotyping of polymorphic genetic markers, large-scale and small-scale DNA sequencing, and for genomewide, multi-gene, and single-gene RNA expression analyses. Each of these technologies requires high-cost items of equipment and expertise, and the UCD-SDRC Molecular Genetic Analysis Core will coordinate access among several existing oncampus core facilities that own and operate the equipment necessary for all of these technologies, to provide these services to UCD-SDCR members at discount pricing compared to either the unsubsidized cost of these services from these core labs or the cost of these services from commercial entities. In addition, the UCD-SDRC Molecular Genetic Analysis Core will provide expertise to investigators in design of genetic studies, so as to optimize use of valuable patient samples and resources to allow investigators to answer important research questions in skin disease.

Public Health Relevance

The UCD-SDRC Molecular Genetic Analysis Core will provide essential infrastructure support to allow members to access a palette of different molecular genetic analytical capabilities not typically found in the ndividual research laboratory. Funds provided to the Core will subsidize SDRC Members'genotyping, DNA sequencing, and gene expression analyses in the investigation of skin disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
5P30AR057212-05
Application #
8519056
Study Section
Special Emphasis Panel (ZAR1-KM-D)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
5
Fiscal Year
2013
Total Cost
$147,214
Indirect Cost
$50,997
Name
University of Colorado Denver
Department
Type
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Riching, Andrew S; Zhao, Yuanbiao; Cao, Yingqiong et al. (2018) Suppression of Pro-fibrotic Signaling Potentiates Factor-mediated Reprogramming of Mouse Embryonic Fibroblasts into Induced Cardiomyocytes. J Vis Exp :
Ravindran Menon, Dinoop; Luo, Yuchun; Arcaroli, John J et al. (2018) CDK1 Interacts with Sox2 and Promotes Tumor Initiation in Human Melanoma. Cancer Res 78:6561-6574
Cao, Yu; Liu, Han; Gao, Liwei et al. (2018) Cooperation Between Pten and Smad4 in Murine Salivary Gland Tumor Formation and Progression. Neoplasia 20:764-774
Mukherjee, Nabanita; Strosnider, Andrew; Vagher, Bay et al. (2018) BH3 mimetics induce apoptosis independent of DRP-1 in melanoma. Cell Death Dis 9:907
Kogut, Igor; McCarthy, Sandra M; Pavlova, Maryna et al. (2018) High-efficiency RNA-based reprogramming of human primary fibroblasts. Nat Commun 9:745
Gaskill, Christa F; Carrier, Erica J; Kropski, Jonathan A et al. (2017) Disruption of lineage specification in adult pulmonary mesenchymal progenitor cells promotes microvascular dysfunction. J Clin Invest 127:2262-2276
Mukherjee, Nabanita; Lu, Yan; Almeida, Adam et al. (2017) Use of a MCL-1 inhibitor alone to de-bulk melanoma and in combination to kill melanoma initiating cells. Oncotarget 8:46801-46817
Miller, Shannon M; Miles, Brodie; Guo, Kejun et al. (2017) Follicular Regulatory T Cells Are Highly Permissive to R5-Tropic HIV-1. J Virol 91:
Yang, N; Leung, E L-H; Liu, C et al. (2017) INTU is essential for oncogenic Hh signaling through regulating primary cilia formation in basal cell carcinoma. Oncogene 36:4997-5005
Shah, Khadim; Mehmood, Sabba; Jan, Abid et al. (2017) Sequence variants in nine different genes underlying rare skin disorders in 10 consanguineous families. Int J Dermatol 56:1406-1413

Showing the most recent 10 out of 61 publications