Core C will support and encourage research into cutaneous epithelial stem cells by providing expertise and training in the characterization and isolation of epithelial stem cells in the hair follicle. The main goals of Core C are to enable investigators to analyze their transgenic or mutant mice for alterations in epithelial stem cells and to encourage translation of mouse work to human skin using a human skin/scid mouse xenograft model. Core C takes advantage of assays and expertise in stem cells found in the core director's laboratory, as well as existing resources and successful cores established at Penn. In particular, Core C will integrate with Penn's School of Medicine Flow Cytometry Core run out of the pathology department and the Xenografting core in the department of medicine that is partly funded through the Institute for Regenerative Medicine. These interactions will assure that investigators will have access to high quality, cost effective services, as well as the scientific expertise necessary to study epithelial stem cells in their research efforts. The stem cell core will offer analysis of hair follicle stem and progenitor cells using a wide variety of standard (label-retaining cell, immunohistochemistry) and cutting edge assays (marker analysis by fluorescent activated cell sorting [FACS],.multipotency testing). Core C will offer functional testing of hair follicle stem and progenitor cells in reconstitution assays. A major part of the core will be to provide training to laboratory personnel so that they can isolate cell populations from the skin and perform FACS analysis and cell isolation using the established Flow Cytometry Core. The human skin xenograft portion of Core C will encourage testing relevance of mouse findings in human skin. The xenograft model is an elegant means to perform preclinical functional studies on human skin that will streamline the development of clinically relevant technologies. Core C will integrate with Core A by using Core A's immunohistochemistry services to assess stem cell markers in tissues. Core C will integrate with Core B by receiving skin for xenografting.

Public Health Relevance

Core C will support the majority of SDRC members including several highly talented investigators outside the skin field who are interested in pursing questions related to cutaneous epithelial stem cells. Core C will offer analysis and isolation of stem cell populations, as well as the ability to study human skin grafted onto immunodeficient mice using sophisticated techniques available through medical school supported cores.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
5P30AR057217-04
Application #
8376526
Study Section
Special Emphasis Panel (ZAR1-KM-D)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
4
Fiscal Year
2012
Total Cost
$147,693
Indirect Cost
$55,385
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Monteleon, Christine L; Agnihotri, Tanvir; Dahal, Ankit et al. (2018) Lysosomes Support the Degradation, Signaling, and Mitochondrial Metabolism Necessary for Human Epidermal Differentiation. J Invest Dermatol 138:1945-1954
Meisel, Jacquelyn S; Sfyroera, Georgia; Bartow-McKenney, Casey et al. (2018) Commensal microbiota modulate gene expression in the skin. Microbiome 6:20
Plikus, Maksim V; Guerrero-Juarez, Christian F; Ito, Mayumi et al. (2017) Regeneration of fat cells from myofibroblasts during wound healing. Science 355:748-752
Xu, Mingang; Horrell, Jeremy; Snitow, Melinda et al. (2017) WNT10A mutation causes ectodermal dysplasia by impairing progenitor cell proliferation and KLF4-mediated differentiation. Nat Commun 8:15397
Geherin, Skye A; Gómez, Daniela; Glabman, Raisa A et al. (2016) IL-10+ Innate-like B Cells Are Part of the Skin Immune System and Require ?4?1 Integrin To Migrate between the Peritoneum and Inflamed Skin. J Immunol 196:2514-2525
Lo, Agnes S; Mao, Xuming; Mukherjee, Eric M et al. (2016) Pathogenicity and Epitope Characteristics Do Not Differ in IgG Subclass-Switched Anti-Desmoglein 3 IgG1 and IgG4 Autoantibodies in Pemphigus Vulgaris. PLoS One 11:e0156800
Cho, Michael Jeffrey; Ellebrecht, Christoph T; Hammers, Christoph M et al. (2016) Determinants of VH1-46 Cross-Reactivity to Pemphigus Vulgaris Autoantigen Desmoglein 3 and Rotavirus Antigen VP6. J Immunol 197:1065-73
Hammers, Christoph M; Stanley, John R (2016) Mechanisms of Disease: Pemphigus and Bullous Pemphigoid. Annu Rev Pathol 11:175-97
Ellebrecht, Christoph T; Bhoj, Vijay G; Nace, Arben et al. (2016) Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353:179-84
Gay, Denise L; Yang, Chao-Chun; Plikus, Maksim V et al. (2015) CD133 expression correlates with membrane beta-catenin and E-cadherin loss from human hair follicle placodes during morphogenesis. J Invest Dermatol 135:45-55

Showing the most recent 10 out of 97 publications