The hypoxia inducible factor HIF-1 alpha is ubiquitously expressed but undergoes proteosomal degradation under normal oxygen conditions. However, because the skin is naturally hypoxic, HIF-1 alpha is stably expressed and detectable by immunohistochemistry in the epidermis and hair follicle. We have observed that mice in which HIF-1 alpha has been deleted postnatally develop skin lesions that are characterized by epidermal thickening and hair loss. Recent research has shown that HIF-1 alpha regulates p21 expression in keratinocytes, and correlates with cell cycle arrest in cultured keratinocytes in vitro. This proposal will test the following hypothesis: HIF-1 alpha plays an essential role in regulating keratinocyte proliferation and differentiation in vivo in a c-Myc dependent manner. To test this hypothesis, we will (1) determine the role of HIF-1 alpha in the epidermis and (2) determine the mediators of epidermal HIF-1 alpha activity, focusing on c- Myc. The proposed experiments will allow us to conduct initial investigations into the role of HIF-1 alpha in keratinocytes. The overall goal of the studies is to understand the degree to which HIF-1 alpha regulates biological processes in physiological settings such as the epidermis, as well as the mechanisms by which it acts, and how this phenomenon contributes to skin growth and differentiation in both homeostasis and disease.

Public Health Relevance

Oxygen sensitive hypoxia inducible factors (HIFs) participate in the transcriptional response to low oxygen availability and thus regulate important biological processes in development, homeostasis, and disease. This project will provide fundamental insight into how HIF-1 alpha controls keratinocyte behavior, and could suggest new strategies for promoting skin regeneration and treating hyperproliferative skin diseases.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-KM-D)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
United States
Zip Code
Ellebrecht, Christoph T; Bhoj, Vijay G; Nace, Arben et al. (2016) Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353:179-84
Lo, Agnes S; Mao, Xuming; Mukherjee, Eric M et al. (2016) Pathogenicity and Epitope Characteristics Do Not Differ in IgG Subclass-Switched Anti-Desmoglein 3 IgG1 and IgG4 Autoantibodies in Pemphigus Vulgaris. PLoS One 11:e0156800
Cho, Michael Jeffrey; Ellebrecht, Christoph T; Hammers, Christoph M et al. (2016) Determinants of VH1-46 Cross-Reactivity to Pemphigus Vulgaris Autoantigen Desmoglein 3 and Rotavirus Antigen VP6. J Immunol 197:1065-73
Billings, Paul C; Sanzari, Jenine K; Kennedy, Ann R et al. (2015) Comparative analysis of colorimetric staining in skin using open-source software. Exp Dermatol 24:157-9
Suzuki, Daisuke; Sahu, Raju; Leu, N Adrian et al. (2015) The carboxy-terminus of p63 links cell cycle control and the proliferative potential of epidermal progenitor cells. Development 142:282-90
Gay, Denise L; Yang, Chao-Chun; Plikus, Maksim V et al. (2015) CD133 expression correlates with membrane beta-catenin and E-cadherin loss from human hair follicle placodes during morphogenesis. J Invest Dermatol 135:45-55
Ortiz, Myrna L; Kumar, Vinit; Martner, Anna et al. (2015) Immature myeloid cells directly contribute to skin tumor development by recruiting IL-17-producing CD4+ T cells. J Exp Med 212:351-67
Agarwal, Priti; Rashighi, Mehdi; Essien, Kingsley I et al. (2015) Simvastatin prevents and reverses depigmentation in a mouse model of vitiligo. J Invest Dermatol 135:1080-8
Wong, Waihay J; Richardson, Theresa; Seykora, John T et al. (2015) Hypoxia-inducible factors regulate filaggrin expression and epidermal barrier function. J Invest Dermatol 135:454-61
Hammers, Christoph M; Chen, Jing; Lin, Chenyan et al. (2015) Persistence of anti-desmoglein 3 IgG(+) B-cell clones in pemphigus patients over years. J Invest Dermatol 135:742-9

Showing the most recent 10 out of 86 publications