The Muscular Dystrophy Core Center at UCLA is comprised of a group of scientists interested in the development of therapeutics for degenerative muscle disease. The goal of the Center is to improve and facilitate the process of discovery and pre-clinical testing for muscular dystrophy by providing resources, pilot funding and an intellectually rich environment that promotes research progress and encourages productive interactions between muscle researchers and other researchers in related disciplines on campus. The existence of the Center will attract scientists that are both established muscle researchers and those that have not previously conducted muscle research and, with this association, add new expertise and experience to the group. The Cores will use high throughput and non-invasive analyses based on novel cellular assays and novel genetically modified mouse models. The high throughput and non-invasive strategies being used by Center Scientists are not traditionally associated with muscle disease and may thereby foster novel advancements and rapid development of therapeutics. The Center membership reflects a variety of different scientific expertise that will facilitate this endeavor.
The aims of the Administrative Core are to coordinate the activities of the Center and to facilitate these goals. Specifically the Aims of the Administrative Core are:
Aim 1 : To provide administrative support to the Cores and all activities of the Center.
Aim 2 : To facilitate collaboration between Center Scientists and encouragement of Core usage by organizing enrichment activities such as a seminar series, annual retreat and maintenance of a website.
Aim 3 : To oversee review and funding of pilot and feasibility projects.
Aim 4 : To facilitate data sharing and use of the cores from the greater community of dystrophy researchers so that the cores will provide a national resource for muscular dystrophy research.

Public Health Relevance

Muscular dystrophies are a group of devastating neuromuscular disorders with substantial morbidity and premature death. Duchenne MD in particular is the most common, lethal, inherited disorder with an incidence of 1 in 3,000 live male births. Current therapeutic approaches are inadequate and most treatment plans are directed at palliative care. The focus of this Core Center is to use cutting edge, highthroughput assays to identify new therapeutic strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
5P30AR057230-02
Application #
7799274
Study Section
Special Emphasis Panel (ZAR1-CHW-G (M1))
Program Officer
Nuckolls, Glen H
Project Start
2009-04-01
Project End
2014-03-31
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
2
Fiscal Year
2010
Total Cost
$613,927
Indirect Cost
Name
University of California Los Angeles
Department
Neurology
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Young, Courtney S; Mokhonova, Ekaterina; Quinonez, Marbella et al. (2017) Creation of a Novel Humanized Dystrophic Mouse Model of Duchenne Muscular Dystrophy and Application of a CRISPR/Cas9 Gene Editing Therapy. J Neuromuscul Dis 4:139-145
Barseghyan, Hayk; Tang, Wilson; Wang, Richard T et al. (2017) Next-generation mapping: a novel approach for detection of pathogenic structural variants with a potential utility in clinical diagnosis. Genome Med 9:90
Reyhan, Meral L; Wang, Zhe; Kim, Hyun J et al. (2017) Effect of free-breathing on left ventricular rotational mechanics in healthy subjects and patients with duchenne muscular dystrophy. Magn Reson Med 77:864-869
Yao, Jiayi; Guihard, Pierre J; Wu, Xiuju et al. (2017) Vascular endothelium plays a key role in directing pulmonary epithelial cell differentiation. J Cell Biol 216:3369-3385
Xi, Haibin; Fujiwara, Wakana; Gonzalez, Karen et al. (2017) In Vivo Human Somitogenesis Guides Somite Development from hPSCs. Cell Rep 18:1573-1585
Capote, Joana; Kramerova, Irina; Martinez, Leonel et al. (2016) Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype. J Cell Biol 213:275-88
Brown, Robert; Lee, Hane; Eskin, Ascia et al. (2016) Leveraging ancestry to improve causal variant identification in exome sequencing for monogenic disorders. Eur J Hum Genet 24:113-9
Srinivasan, Subashini; Kroeker, Randall M; Gabriel, Simon et al. (2016) Free-breathing variable flip angle balanced SSFP cardiac cine imaging with reduced SAR at 3T. Magn Reson Med 76:1210-6
Kramerova, Irina; Ermolova, Natalia; Eskin, Ascia et al. (2016) Failure to up-regulate transcription of genes necessary for muscle adaptation underlies limb girdle muscular dystrophy 2A (calpainopathy). Hum Mol Genet 25:2194-2207
DiFranco, Marino; Kramerova, Irina; Vergara, Julio L et al. (2016) Attenuated Ca(2+) release in a mouse model of limb girdle muscular dystrophy 2A. Skelet Muscle 6:11

Showing the most recent 10 out of 57 publications