The Muscular Dystrophy Core Center at UCLA is comprised of a group of scientists interested in the development of therapeutics for degenerative muscle disease. The goal of the Center is to improve and facilitate the process of discovery and pre-clinical testing for muscular dystrophy by providing resources, pilot funding and an intellectually rich environment that promotes research progress and encourages productive interactions between muscle researchers and other researchers in related disciplines on campus. The existence of the Center will attract scientists that are both established muscle researchers and those that have not previously conducted muscle research and, with this association, add new expertise and experience to the group. The Cores will use high throughput and non-invasive analyses based on novel cellular assays and novel genetically modified mouse models. The high throughput and non-invasive strategies being used by Center Scientists are not traditionally associated with muscle disease and may thereby foster novel advancements and rapid development of therapeutics. The Center membership reflects a variety of different scientific expertise that will facilitate this endeavor.
The aims of the Administrative Core are to coordinate the activities of the Center and to facilitate these goals. Specifically the Aims of the Administrative Core are:
Aim 1 : To provide administrative support to the Cores and all activities of the Center.
Aim 2 : To facilitate collaboration between Center Scientists and encouragement of Core usage by organizing enrichment activities such as a seminar series, annual retreat and maintenance of a website.
Aim 3 : To oversee review and funding of pilot and feasibility projects.
Aim 4 : To facilitate data sharing and use of the cores from the greater community of dystrophy researchers so that the cores will provide a national resource for muscular dystrophy research.

Public Health Relevance

Muscular dystrophies are a group of devastating neuromuscular disorders with substantial morbidity and premature death. Duchenne MD in particular is the most common, lethal, inherited disorder with an incidence of 1 in 3,000 live male births. Current therapeutic approaches are inadequate and most treatment plans are directed at palliative care. The focus of this Core Center is to use cutting edge, highthroughput assays to identify new therapeutic strategies.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-CHW-G (M1))
Program Officer
Nuckolls, Glen H
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Schools of Medicine
Los Angeles
United States
Zip Code
Villalta, S Armando; Rosenthal, Wendy; Martinez, Leonel et al. (2014) Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Sci Transl Med 6:258ra142
Ermolova, N V; Martinez, L; Vetrone, S A et al. (2014) Long-term administration of the TNF blocking drug Remicade (cV1q) to mdx mice reduces skeletal and cardiac muscle fibrosis, but negatively impacts cardiac function. Neuromuscul Disord 24:583-95
Swaggart, Kayleigh A; Demonbreun, Alexis R; Vo, Andy H et al. (2014) Annexin A6 modifies muscular dystrophy by mediating sarcolemmal repair. Proc Natl Acad Sci U S A 111:6004-9
Nelson, Michael D; Rader, Florian; Tang, Xiu et al. (2014) PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy. Neurology 82:2085-91
Lee, Hane; Deignan, Joshua L; Dorrani, Naghmeh et al. (2014) Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 312:1880-7
Sareen, Dhruv; O'Rourke, Jacqueline G; Meera, Pratap et al. (2013) Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med 5:208ra149
Rudnik-Schoneborn, Sabine; Senderek, Jan; Jen, Joanna C et al. (2013) Pontocerebellar hypoplasia type 1: clinical spectrum and relevance of EXOSC3 mutations. Neurology 80:438-46
Marshall, Jamie L; Kwok, Yukwah; McMorran, Brian J et al. (2013) The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy. FEBS J 280:4210-29
Wan, Jijun; Yourshaw, Michael; Mamsa, Hafsa et al. (2012) Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat Genet 44:704-8
Kudryashova, Elena; Kramerova, Irina; Spencer, Melissa J (2012) Satellite cell senescence underlies myopathy in a mouse model of limb-girdle muscular dystrophy 2H. J Clin Invest 122:1764-76

Showing the most recent 10 out of 17 publications