Washington University has a long record of excellence in musculoskeletal research and clinical care. Historically the base for the research efforts have been individual laboratories in the Departments of Medicine, Orthopaedic Surgery and Pathology. In recent years, ad hoc collaborations have developed between these groups and non-musculoskeletal investigators in Departments of Anatomy &Neurobiology, Biomedical Engineering, Cell Biology, Developmental Biology, Genetics and Pediatrics, thereby significantly expanding our biological skill set and vision. However, we have lacked a central mechanism to leverage these new collaborations efficiently into new research discoveries. With this broad, diverse research base, we propose to create the Washington University Core Center for Musculoskeletal Biology and Medicine (CCMBM). The CCMBM Research Base has 48 members who have over 21 million dollars of annual research support (direct costs). Seventeen of the members have NIAMS funding (21 research grants). The primary goals of the Center are to enhance the productivity of established musculoskeletal scientists, to support young investigators in our field and to facilitate collaboration between established skeletal scientists and those bringing non-traditional questions and strategies to our discipline. The major programmatic focus of the CCMBM will be to support and expedite the creation and analysis of animal models of relevance to musculoskeletal biology and disease. Three Research Cores are proposed: Musculoskeletal Structure and Strength (Core B), In Situ Molecular Analysis (Core C), and Mouse Genetic Models (Core D). Our basic and translational research efforts will be directed toward an understanding of musculoskeletal biology at the molecular, cellular and tissue levels with the goal that such studies will directly impact our understanding of the pathophysiology of osteoporosis, osteoarthritis, muscular dystrophy, osteochondrodysplasias as well as regeneration of bone, cartilage, tendon and muscle. Through the Administrative Core (Core A), the CCMBM will sponsor enrichment activities to promote the exchange of information, ideas and reagents between CCMBM members, and to engage non-members who are doing meritorious research of interest to the CCMBM membership. We will also implement a Pilot &Feasibility Grant Program to provide funding support to young investigators in our field as well as to established, non-musculoskeletal investigators who propose to apply their outside expertise to a problem in musculoskeletal biology or medicine.

Public Health Relevance

Musculoskeletal disorders such as osteoarthritis, osteoporosis and muscular dystropy are a main cause of pain and suffering leading to diminished quality and lost time from work. Our research uses animal models to understand the biological factors underlying musculoskeletal disorders. We use histology, imaging and mechanical testing techniques to assess the structure and strength of bone, tendon and muscle.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
5P30AR057235-04
Application #
8246485
Study Section
Special Emphasis Panel (ZAR1-CHW-G (M1))
Program Officer
Tyree, Bernadette
Project Start
2009-05-11
Project End
2014-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
4
Fiscal Year
2012
Total Cost
$598,841
Indirect Cost
$199,735
Name
Washington University
Department
Orthopedics
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Diez-Perez, A; Bouxsein, M L; Eriksen, E F et al. (2016) Technical note: Recommendations for a standard procedure to assess cortical bone at the tissue-level in vivo using impact microindentation. Bone Rep 5:181-185
Gelberman, Richard H; Shen, Hua; Kormpakis, Ioannis et al. (2016) Effect of adipose-derived stromal cells and BMP12 on intrasynovial tendon repair: A biomechanical, biochemical, and proteomics study. J Orthop Res 34:630-40
Blanton, Laura V; Charbonneau, Mark R; Salih, Tarek et al. (2016) Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351:
Singh, Sudhir; Manson, Scott R; Lee, Heedoo et al. (2016) Tubular Overexpression of Angiopoietin-1 Attenuates Renal Fibrosis. PLoS One 11:e0158908
Agapova, Olga A; Fang, Yifu; Sugatani, Toshifumi et al. (2016) Ligand trap for the activin type IIA receptor protects against vascular disease and renal fibrosis in mice with chronic kidney disease. Kidney Int 89:1231-43
Kim, Yeawon; Lee, Heedoo; Manson, Scott R et al. (2016) Mesencephalic Astrocyte-Derived Neurotrophic Factor as a Urine Biomarker for Endoplasmic Reticulum Stress-Related Kidney Diseases. J Am Soc Nephrol 27:2974-2982
Black, James C; Ricci, William M; Gardner, Michael J et al. (2016) Novel Augmentation Technique for Patellar Tendon Repair Improves Strength and Decreases Gap Formation: A Cadaveric Study. Clin Orthop Relat Res 474:2611-2618
Kormpakis, Ioannis; Linderman, Stephen W; Thomopoulos, Stavros et al. (2016) Enhanced Zone II Flexor Tendon Repair through a New Half Hitch Loop Suture Configuration. PLoS One 11:e0153822
Yan, Huimin; Duan, Xin; Pan, Hua et al. (2016) Suppression of NF-κB activity via nanoparticle-based siRNA delivery alters early cartilage responses to injury. Proc Natl Acad Sci U S A 113:E6199-E6208
Shashkova, Elena V; Trivedi, Jahnavi; Cline-Smith, Anna B et al. (2016) Osteoclast-Primed Foxp3+ CD8 T Cells Induce T-bet, Eomesodermin, and IFN-γ To Regulate Bone Resorption. J Immunol 197:726-35

Showing the most recent 10 out of 251 publications