Tissue structure and strength are the most relevant properties when assessing animal models related to musculoskeletal injury, disease and repair. Whether the treatment effects are created by genetic manipulation, metabolic challenge, simulated injury, surgical repair or other intervention, the net effects must be judged based on whether they have resulted in more or less tissue, whether that tissue has normal morphology, and whether the tissue or skeletal structure has increased or decreased mechanical properties. We have the necessary equipment and the demonstrated user expertise to assess the structural and mechanical properties of a range of musculoskeletal tissue and structures derived from animal models. There have been productive collaborations between investigators in the Research Base and the personnel of this Core, but these have been limited in number by the lack of a mechanism to support the acquisition and analysis of data by expert users and the training of non-expert users. The objective of this Musculoskeletal Structure and Strength Core (Core B) is to provide a mechanism to increase access to existing resources for x-ray based densitometry and imaging, and mechanical testing, and to thereby enable new interactions and enhance existing interactions between musculoskeletal researchers at Washington University. We will maintain protocols and equipment to promote quality control, provide technical support and training, and perform the following services on musculoskeletal structures and tissues from animal models (mouse to canine) generated by investigators in the Core Center Research Base.
Aim 1 : X-ray based imaging; available modalities include radiography, dual-energy x-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT) and micro-computed tomography (microCT). Each of these is available for ex vivo or in vivo imaging.
Aim 2 : Mechanical testing;available modalities include whole-bone bending and compression, trabecular indentation, tensile testing of demineralized bone, tendon and tendon-bone insertion site tensile testing;muscle force measurement. By offering these Core services we will increase research productivity of established musculoskeletal investigators on our campus and facilitate non-musculoskeletal investigators wishing to bring new perspectives to studies in musculoskeletal biology and medicine.

Public Health Relevance

Musculoskeletal disorders such as osteoarthritis, osteoporosis and muscular dystrophy are a main cause of pain and suffering leading to diminished quality and lost time from work. Our research uses animal models to understand the biological factors underlying musculoskeletal disorders. We use imaging and mechanical testing techniques to assess the structure and strength of bone, tendon and muscle.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
5P30AR057235-05
Application #
8468647
Study Section
Special Emphasis Panel (ZAR1-CHW-G)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
5
Fiscal Year
2013
Total Cost
$250,865
Indirect Cost
$90,856
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Linderman, Stephen W; Golman, Mikhail; Gardner, Thomas R et al. (2018) Enhanced tendon-to-bone repair through adhesive films. Acta Biomater 70:165-176
Murali, Bhavna; Ren, Qihao; Luo, Xianmin et al. (2018) Inhibition of the Stromal p38MAPK/MK2 Pathway Limits Breast Cancer Metastases and Chemotherapy-Induced Bone Loss. Cancer Res 78:5618-5630
Patra, Debabrata; DeLassus, Elizabeth; Mueller, Jennifer et al. (2018) Site-1 protease regulates skeletal stem cell population and osteogenic differentiation in mice. Biol Open 7:
Killian, Megan L; Locke, Ryan C; James, Michael G et al. (2018) Novel model for the induction of postnatal murine hip deformity. J Orthop Res :
Shen, Hua; Jayaram, Rohith; Yoneda, Susumu et al. (2018) The effect of adipose-derived stem cell sheets and CTGF on early flexor tendon healing in a canine model. Sci Rep 8:11078
Williams, Matthew J; Sugatani, Toshifumi; Agapova, Olga A et al. (2018) The activin receptor is stimulated in the skeleton, vasculature, heart, and kidney during chronic kidney disease. Kidney Int 93:147-158
Linderman, Stephen W; Shen, Hua; Yoneda, Susumu et al. (2018) Effect of connective tissue growth factor delivered via porous sutures on the proliferative stage of intrasynovial tendon repair. J Orthop Res 36:2052-2063
Guilak, Farshid; Nims, Robert J; Dicks, Amanda et al. (2018) Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol 71-72:40-50
Wang, Cuicui; Silverman, Richard M; Shen, Jie et al. (2018) Distinct metabolic programs induced by TGF-?1 and BMP2 in human articular chondrocytes with osteoarthritis. J Orthop Translat 12:66-73
McAndrew, Christopher M; Agarwalla, Avinesh; Abraham, Adam C et al. (2018) Local bone quality measurements correlates with maximum screw torque at the femoral diaphysis. Clin Biomech (Bristol, Avon) 52:95-99

Showing the most recent 10 out of 335 publications