Over the past four years with the opportunity provided by the P30 CCMBM grant, our loosely organized set of musculoskeletal labs has developed into a well-respected Musculoskeletal Research Center with 75 members from 22 Departments, over 250 publications (158 in Reporter), a new facility with 12 musculoskeletal labs co-localized with the Administration and Research Cores, an active and productive Pilot and Feasibility Program, a popular Musculoskeletal Seminar Series and well-attended Annual Symposia. Our fields of interest have covered a wide variety of common musculoskeletal disorders from osteoporosis to osteoarthritis to tendon injuries to cancer. We now have $59 million in funding with $35 million from the NIH, and were recently awarded a T32 Training grant in Skeletal Metabolic Diseases. During the next five years, we plan to grow our Center to include a wider range of research interests stemming from our larger and more diverse research base, such as cancer metastasis to bone, scoliosis and intervertebral disc disease, tendon to bone healing, cartilage repair and stem cells in regenerative medicine. Our enrichment program will be expanded to include mentoring activities and training and education in specialized research techniques. The CCMBM enables the offering of many new services that will help drive the science of the research base, such as an expansion of the animal models to include zebrafish, isolation of specific populations of cells using histology and new non-invasive techniques to monitor tissue quality. Our Research Cores are: Core B: Musculoskeletal Structure and Strength, Core C: Histology and Morphometry, and Core D: Animal Models. With the help of the ICTS, we are very excited to include a new emphasis on translation of our animal research to the patient. The CCMBM will continue to provide leadership in promoting quality research, foster collaborations and interdisciplinary approaches, expand the ranks of the research base and help drive the science of musculoskeletal investigators by providing increasingly sophisticated and powerful technologies through our research cores.

Public Health Relevance

Musculoskeletal disorders such as osteoarthritis, osteoporosis and muscular dystrophy are a main cause of pain and suffering leading to diminished quality and lost time from work. Our research uses animal models to understand the biological factors underlying musculoskeletal disorders. We use histology, imaging and mechanical testing techniques to assess the structure and strength of bone, tendon and muscle.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
2P30AR057235-06
Application #
8692027
Study Section
Special Emphasis Panel ()
Program Officer
Tyree, Bernadette
Project Start
2009-05-11
Project End
2019-03-31
Budget Start
2014-04-05
Budget End
2015-03-31
Support Year
6
Fiscal Year
2014
Total Cost
$558,252
Indirect Cost
$188,448
Name
Washington University
Department
Orthopedics
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Oladipupo, Sunday S; Smith, Craig; Santeford, Andrea et al. (2014) Endothelial cell FGF signaling is required for injury response but not for vascular homeostasis. Proc Natl Acad Sci U S A 111:13379-84
McAlinden, Audrey; Traeger, Geoffrey; Hansen, Uwe et al. (2014) Molecular properties and fibril ultrastructure of types II and XI collagens in cartilage of mice expressing exclusively the *1(IIA) collagen isoform. Matrix Biol 34:105-13
McAlinden, Audrey (2014) Alternative splicing of type II procollagen: IIB or not IIB? Connect Tissue Res 55:165-76
Tomlinson, Ryan E; Schmieder, Anne H; Quirk, James D et al. (2014) Antagonizing the ?v ?3 integrin inhibits angiogenesis and impairs woven but not lamellar bone formation induced by mechanical loading. J Bone Miner Res 29:1970-80
Holguin, Nilsson; Aguilar, Rhiannon; Harland, Robin A et al. (2014) The aging mouse partially models the aging human spine: lumbar and coccygeal disc height, composition, mechanical properties, and Wnt signaling in young and old mice. J Appl Physiol (1985) 116:1551-60
Rai, Muhammad Farooq; Patra, Debabrata; Sandell, Linda J et al. (2014) Relationship of gene expression in the injured human meniscus to body mass index: a biologic connection between obesity and osteoarthritis. Arthritis Rheumatol 66:2152-64
Tatara, Alexander M; Lipner, Justin H; Das, Rosalina et al. (2014) The role of muscle loading on bone (Re)modeling at the developing enthesis. PLoS One 9:e97375
Alspach, Elise; Flanagan, Kevin C; Luo, Xianmin et al. (2014) p38MAPK plays a crucial role in stromal-mediated tumorigenesis. Cancer Discov 4:716-29
Sato, Eugene J; Killian, Megan L; Choi, Anthony J et al. (2014) Skeletal muscle fibrosis and stiffness increase after rotator cuff tendon injury and neuromuscular compromise in a rat model. J Orthop Res 32:1111-6
Hering, Thomas M; Wirthlin, Louisa; Ravindran, Soumya et al. (2014) Changes in type II procollagen isoform expression during chondrogenesis by disruption of an alternative 5' splice site within Col2a1 exon 2. Matrix Biol 36:51-63

Showing the most recent 10 out of 84 publications