Microarray analysis of clinical samples has provided useful insight into the biological processes and diversity of cell types in complex diseases that includes systemic autoimmune disease. Analysis of tissues such as skin, tumors and peripheral blood cells allows the quantitative characterization of the diversity in sample phenotypes as well as the biological pathways that are deregulated in the disease. The analysis of tumors has demonstrated its ability to quantitatively and reproducibly separate tumors into subtypes with different prognoses, to identify pathways deregulated in the disease and to reveal infiltrating cells. Application of microarray technology to scleroderma skin biopsies, isolated scleroderma cell lines and peripheral blood samples has shown that it will be an important tool for understanding the diversity in rheumatic diseases, as well as changes to the underlying gene expression pathways. In this core, we will use proven methods that have been developed and already successfully implemented in the core Pi's laboratory to analyze skin biopsy samples and peripheral blood mononuclear cells taken from patients with systemic sclerosis and normal controls. High quality RNA will be prepared, hybridized to Agilent technologies whole-genome DNA microarrays by established protocols. Using these established methods, the core Pi's lab has hybridized more than 1000 Agilent microarrays over the past three years. All microarrays are normalized using standard methods and analyzed using a combination of algorithms that include testing for differential expression and pathway analysis. The goals of this core are:
Aim 1. Generate quality controlled DNA microarray hybridizations for each sample and process the resulting data using a standard analysis pipeline. Each sample will be hybridized to Agilent 44,000 element DNA microarrays, scanned on an Axon Instruments GenePix Scanner and submitted to a research microarray database.
Aim 2. Analysis of the resulting data for differentially expressed genes, gene expression signatures predictive of clinical endpoints and deregulated pathways.

Public Health Relevance

High-throughput gene expression analysis has allowed the definition of subsets of scleroderma and identified deregulated pathways that can be targeted therapeutically. A core that includes data analysis will allow the larger community to access this technology.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
5P30AR061271-03
Application #
8540339
Study Section
Special Emphasis Panel (ZAR1-MLB)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
3
Fiscal Year
2013
Total Cost
$143,609
Indirect Cost
Name
Boston University
Department
Type
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Franks, Jennifer M; Cai, Guoshuai; Whitfield, Michael L (2018) Feature specific quantile normalization enables cross-platform classification of molecular subtypes using gene expression data. Bioinformatics 34:1868-1874
Oh, Raymond S; Haak, Andrew J; Smith, Karry M J et al. (2018) RNAi screening identifies a mechanosensitive ROCK-JAK2-STAT3 network central to myofibroblast activation. J Cell Sci 131:
Fleury, Michelle; Belkina, Anna C; Proctor, Elizabeth A et al. (2018) Increased Expression and Modulated Regulatory Activity of Coinhibitory Receptors PD-1, TIGIT, and TIM-3 in Lymphocytes From Patients With Systemic Sclerosis. Arthritis Rheumatol 70:566-577
Rice, Lisa M; Mantero, Julio C; Stratton, Eric A et al. (2018) Serum biomarker for diagnostic evaluation of pulmonary arterial hypertension in systemic sclerosis. Arthritis Res Ther 20:185
Ryu, Changwan; Sun, Huanxing; Gulati, Mridu et al. (2017) Extracellular Mitochondrial DNA Is Generated by Fibroblasts and Predicts Death in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 196:1571-1581
Rice, Lisa M; Mantero, Julio C; Stifano, Giuseppina et al. (2017) A Proteome-Derived Longitudinal Pharmacodynamic Biomarker for Diffuse Systemic Sclerosis Skin. J Invest Dermatol 137:62-70
Lafyatis, Robert; Mantero, Julio C; Gordon, Jessica et al. (2017) Inhibition of ?-Catenin Signaling in the Skin Rescues Cutaneous Adipogenesis in Systemic Sclerosis: A Randomized, Double-Blind, Placebo-Controlled Trial of C-82. J Invest Dermatol 137:2473-2483
Grzegorzewska, Agnieszka P; Seta, Francesca; Han, Rong et al. (2017) Dimethyl Fumarate ameliorates pulmonary arterial hypertension and lung fibrosis by targeting multiple pathways. Sci Rep 7:41605
Looney, Agnieszka P; Han, Rong; Stawski, Lukasz et al. (2017) Synergistic Role of Endothelial ERG and FLI1 in Mediating Pulmonary Vascular Homeostasis. Am J Respir Cell Mol Biol 57:121-131
Taroni, Jaclyn N; Greene, Casey S; Martyanov, Viktor et al. (2017) A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis. Genome Med 9:27

Showing the most recent 10 out of 49 publications