The High Throughput Cell Analysis Core is dedicated to the identification, functional and molecular characterization of muscle-derived cell populations of healthy and diseased adult skeletal muscle. This core includes prospective isolation of muscle-derived cell subpopulations by FACS (Muscle Sorting Service), a high throughput microscopy and screening of libraries of siRNAs, and microRNAs (mlRs) and chemical compounds (High Throughput Screening Service), and in vivo cell transplantation into mouse models of disease (Cell Transplantation Service). The flow cytometry, sorting, high throughput microscopy, chemical and functional genomics screening services are available in existing cores at SBMRI but not readily accessible to the non-SBMRI muscle community. This P30 will make these services available to the San Diego muscle research community. The High Throughput Cell Analysis Core will interface with the Phenotyping Core and the Imaging Core by assisting Center investigators with the appropriate isolation and characterization of muscle-derived cells from the mouse models or human tissues that are provided by the Center member. This core will make available to all Center investigators sophisticated flow-cytometry, high throughput imaging microscopy, and screening of noncoding RNAs (siRNA and mlRNA) and chemical compounds libraries. Moreover, the Core will also provide assistance and training for animal irradiation and cell transplantation. Additional services include single cell analysis and transplantation from Luciferase transgenic mice, enabling the monitoring the homing, proliferation and differentiation of transplanted cells in vivo.

Public Health Relevance

This Core will provide Center investigators with access to and training in isolation, functional analysis and characterization of muscle-derived cell populations sorted by a variety of high throughput analyses. The core will provide instruction on technology, data interpretation and troubleshooting of the proposed experiments. Overall, this Core will play an essential role in the understanding of the relative contribution of the different cell populations to skeletal muscle regeneration in physiological and pathological conditions.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-KM (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
La Jolla
United States
Zip Code
Gokhin, David S; Fowler, Velia M (2017) Software-based measurement of thin filament lengths: an open-source GUI for Distributed Deconvolution analysis of fluorescence images. J Microsc 265:11-20
Kinney, Matthew C; Dayanidhi, Sudarshan; Dykstra, Peter B et al. (2017) Reduced skeletal muscle satellite cell number alters muscle morphology after chronic stretch but allows limited serial sarcomere addition. Muscle Nerve 55:384-392
Jordan, Sabine D; Kriebs, Anna; Vaughan, Megan et al. (2017) CRY1/2 Selectively Repress PPAR? and Limit Exercise Capacity. Cell Metab 26:243-255.e6
Wu, Tongbin; Mu, Yongxin; Bogomolovas, Julius et al. (2017) HSPB7 is indispensable for heart development by modulating actin filament assembly. Proc Natl Acad Sci U S A 114:11956-11961
Latella, Lucia; Dall'Agnese, Alessandra; Boscolo, Francesca Sesillo et al. (2017) DNA damage signaling mediates the functional antagonism between replicative senescence and terminal muscle differentiation. Genes Dev 31:648-659
Consalvi, Silvia; Brancaccio, Arianna; Dall'Agnese, Alessandra et al. (2017) Praja1 E3 ubiquitin ligase promotes skeletal myogenesis through degradation of EZH2 upon p38? activation. Nat Commun 8:13956
Zogby, Andrew M; Dayanidhi, Sudarshan; Chambers, Henry G et al. (2017) Skeletal muscle fiber-type specific succinate dehydrogenase activity in cerebral palsy. Muscle Nerve 55:122-124
McKeithan, Wesley L; Savchenko, Alex; Yu, Michael S et al. (2017) An Automated Platform for Assessment of Congenital and Drug-Induced Arrhythmia with hiPSC-Derived Cardiomyocytes. Front Physiol 8:766
Pérez-Schindler, Joaquín; Esparza, Mary C; McKendry, James et al. (2017) Overload-mediated skeletal muscle hypertrophy is not impaired by loss of myofiber STAT3. Am J Physiol Cell Physiol 313:C257-C261
Gibbons, Michael C; Singh, Anshuman; Engler, Adam J et al. (2017) The role of mechanobiology in progression of rotator cuff muscle atrophy and degeneration. J Orthop Res :

Showing the most recent 10 out of 80 publications