The San Diego Skeletal Muscle Research Center (SDMRC) is composed of 21 scientists who span five research institutions and nine academic Departments. The mission of the SDMRC is twofold: (1) to provide investigators with an effective infrastructure and environment to accelerate their cutting-edge research in an efficient and cost-effective manner, and (2) to provide an organizational structure that enhances communication amongst members and provides education and training for the San Diego community. The creation of this Center will integrate, educate and synergize laboratories on a more formalized basis than currently exists. Specifically, this Center will provide a mechanism for rapidly performing common assays needed by all investigators with minimal overhead in terms of time and money by creating three Cores: Phenotyping, Imaging, and High Throughput Cell Analysis. This will automatically enhance each of the individual programs since state-of-the-art methods will instantly become available to members. Access to new methods will undoubtedly spawn new ideas that accompany the experimental data. SDMRC will increase efficiency (since a mechanism is in place to collaborate and share information) and productivity (since studies will be routinely multidisciplinary) that will enable individuals to have a larger impact in their individual research programs than would be possible in isolation.

Public Health Relevance

Skeletal muscle research is necessarily translational since muscle diseases compromise quality of life, mobility, and overall health. Numerous diseases can be primarily or secondarily attributable to muscle problems which include primary myopathies such as the muscular dystrophies and also the secondary effects of muscle disease that lead to fragility, osteoporosis, obesity, diabetes and aging. The routine direct access to human muscle tissue in the operating room and in the clinic instantly provides extremely valuable tissue to all Center investigators using animal models of disease and this will insure that the work in this Core maintains clinical relevance since the results from model systems can be calibrated against the actual disease itself.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-KM (M1))
Program Officer
Boyce, Amanda T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Schools of Medicine
La Jolla
United States
Zip Code
Chapman, Mark A; Pichika, Rajeswari; Lieber, Richard L (2015) Collagen crosslinking does not dictate stiffness in a transgenic mouse model of skeletal muscle fibrosis. J Biomech 48:375-8
Gokhin, David S; Tierney, Matthew T; Sui, Zhenhua et al. (2014) Calpain-mediated proteolysis of tropomodulin isoforms leads to thin filament elongation in dystrophic skeletal muscle. Mol Biol Cell 25:852-65
Dayanidhi, Sudarshan; Lieber, Richard L (2014) Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve 50:723-32
Tierney, Matthew Timothy; Aydogdu, Tufan; Sala, David et al. (2014) STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med 20:1182-6
Chakkalakal, Joe V; Christensen, Josef; Xiang, Wanyi et al. (2014) Early forming label-retaining muscle stem cells require p27kip1 for maintenance of the primitive state. Development 141:1649-59
Tuttle, Lori J; Alperin, Marianna; Lieber, Richard L (2014) Post-mortem timing of skeletal muscle biochemical and mechanical degradation. J Biomech 47:1506-9
Wahlquist, Christine; Jeong, Dongtak; Rojas-Muñoz, Agustin et al. (2014) Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 508:531-5
Chapman, Mark A; Zhang, Jianlin; Banerjee, Indroneal et al. (2014) Disruption of both nesprin 1 and desmin results in nuclear anchorage defects and fibrosis in skeletal muscle. Hum Mol Genet 23:5879-92
Albini, Sonia; Puri, Pier Lorenzo (2014) Generation of myospheres from hESCs by epigenetic reprogramming. J Vis Exp :e51243
Saccone, Valentina; Consalvi, Silvia; Giordani, Lorenzo et al. (2014) HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes Dev 28:841-57

Showing the most recent 10 out of 23 publications