The Histology, Biochemistry, and Molecular Imaging (HBMI) Core will provide musculoskeletal histopathology, histomorphometry, biochemistry, cellular, and molecular imaging and analysis services to support the collaborative clinical and basic science components of the Center for Musculoskeletal Research (CMSR) all under a single administrative structure. The expansion and integration of services within the HBMI Core will further increase productivity, enhance the efficiency of the Core, and enable the translation between histological and histomorophometric data and the underlying biochemical, cellular, and molecular mechanisms. Additionally, the HBMI Core will develop novel technologies and approaches to generate and analyze histology, histomorphometry, biochemistry, cellular, and molecular data in the musculoskeletal sciences, which will accelerated the pace of research for all funded projects within the CMSR. The overall Specific Aims of the Core are to continue to: (1) Provide efficient and high quality histology, histomorphometry, biochemistry, cellular, and molecular imaging and analysis services within the musculoskeletal sciences;(2) Provide access to Research Assistant Professors (RAP) and Unfunded Physician Scientists (UPS), who will also assist the Core by providing unique and highly skilled mentoring within the musculoskeletal sciences through the utilization of cutting edge histological, biochemical, and molecular technologies;and (3) Innovate HBMI musculoskeletal basic and clinical research by developing novel technologies and integrated approaches. The primary goals related to Specific Aim 2 and 3 are to develop: 1) digital whole slide imaging (Olympus'NanoZoomer) technology to capture images for automated quantitative analysis of standard and novel parameters of bone and cartilage histomorphometry using VisioPharm's image analysis software and validate these parameters using the standardized OsteoMetrics histomorphometry system;2) quantitative methodology using the NanoZoomer and VisioPharm image analysis software or the OsteoMetrics histomorphometry system to analyze protein and gene expression by immunohistochemistry (IHC) or in situ hybridization (ISH) in tissue samples of fracture callus, bone and cartilage;3) Tissue Microarrays (TMAs) of murine and human tissues to optimize IHC analysis of protein expression and quantify expression automatically using the NanoZoomer system;and 4) novel high throughput cell based assays using the BioTek Synergy Mx multi-mode microplate reader to screen for important signaling pathway interactions that regulate musculoskeletal cell proliferation differentiation, and apoptosis. The translation between histological and histomorophometric data and the underlying biochemical, cellular, and molecular mechanisms will be facilitated by the HBMI Co-Directors (Dr, Matthew J. Hilton;PI and Dr. Brendan Boyce;Co-PI), which will oversee all of the components of the Core and assist in the development of new technologies to support funded research in the CMSR.

Public Health Relevance

The Histology, Biochemistry, and Molecular Imaging (HBMI) Core will provide key services to and develop new technologies for all faculty supported by the Core Center for Musculoskeletal Biology and Medicine (CCMBM). Establishment of the HBMI Core and centralizing the associated services in a single Core laboratory significantly increases efficiency and reduces costs by avoiding duplication of assays, facilitates sharing of new technological advances, and provides mentoring and training opportunities for HBMI associated RAP and UPS allowing them to leverage their particular expertise and develop their skills as future Pis

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
1P30AR061307-01
Application #
8186756
Study Section
Special Emphasis Panel (ZAR1-KM (M1))
Project Start
2011-08-08
Project End
2016-06-30
Budget Start
2011-08-08
Budget End
2012-06-30
Support Year
1
Fiscal Year
2011
Total Cost
$290,942
Indirect Cost
Name
University of Rochester
Department
Type
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Schott, Eric M; Farnsworth, Christopher W; Grier, Alex et al. (2018) Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight 3:
Studentsova, Valentina; Mora, Keshia M; Glasner, Melissa F et al. (2018) Obesity/Type II Diabetes Promotes Function-limiting Changes in Murine Tendons that are not reversed by Restoring Normal Metabolic Function. Sci Rep 8:9218
Maynard, Robert D; Godfrey, Dana A; Medina-Gomez, Carolina et al. (2018) Characterization of expression and alternative splicing of the gene cadherin-like and PC esterase domain containing 1 (Cped1). Gene 674:127-133
Yukata, Kiminori; Xie, Chao; Li, Tian-Fang et al. (2018) Teriparatide (human PTH1-34) compensates for impaired fracture healing in COX-2 deficient mice. Bone 110:150-159
Sun, Wen; Zhang, Hengwei; Wang, Hua et al. (2017) Targeting Notch-Activated M1 Macrophages Attenuates Joint Tissue Damage in a Mouse Model of Inflammatory Arthritis. J Bone Miner Res 32:1469-1480
Le Bleu, Heather K; Kamal, Fadia A; Kelly, Meghan et al. (2017) Extraction of high-quality RNA from human articular cartilage. Anal Biochem 518:134-138
Elbarbary, Reyad A; Miyoshi, Keita; Hedaya, Omar et al. (2017) UPF1 helicase promotes TSN-mediated miRNA decay. Genes Dev 31:1483-1493
Zhang, Yongchun; O'Keefe, Regis J; Jonason, Jennifer H (2017) BMP-TAK1 (MAP3K7) Induces Adipocyte Differentiation Through PPAR? Signaling. J Cell Biochem 118:204-210
Zingman, Alissa; Li, Hiayan; Sundem, Leigh et al. (2017) Shoulder arthritis secondary to rotator cuff tear: A reproducible murine model and histopathologic scoring system. J Orthop Res 35:506-514
Ackerman, Jessica E; Best, Katherine T; O'Keefe, Regis J et al. (2017) Deletion of EP4 in S100a4-lineage cells reduces scar tissue formation during early but not later stages of tendon healing. Sci Rep 7:8658

Showing the most recent 10 out of 123 publications