Identification of the structural, architectural, cellular and molecular basis for the skeletal phenotypes that result from genetic/pharmacologic interventions and disease states is essential for translating scientific discoveries into therapeutic innovations. The goal of the Skeletal Phenotyping Core is to provide costefficient, state ofthe art, quality-controlled skeletal phenotyping services to fulfill the unmet needs of junior investigators who are transitioning to an independent career in skeletal biology, of established investigators who are new to skeletal biology and of established skeletal biologists. A key part ofthe mission ofthe Skeletal Phenotyping Core will be education, mentoring and incorporation of novel and innovative services to meet the needs ofthe constituent investigators. Consultation regarding experimental design, specimen handling and data analysis will be provided by Core directors, to insure that the maximal amount of data can be obtained from each specimen/subject. The Core will host didactic teaching sessions, hands-on workshops and seminars designed to educate investigators and to foster collaboration among investigators. A special focus ofthe Core will be mentorship of junior investigators and of those investigators new to skeletal biology. This infrastructure and these activities will 1) enhance the productivity and expand the scope of research being conducted by the Core investigators, 2) promote innovation and incorporation of novel technologies into core services 3) foster synergy across a large and diverse community interested in skeletal research, ultimately leading to levels of success greater than the sum of the individual investigators' projected achievements. This will be achieved by the following specific Aims:
Aim 1 : Provide efficient, high-quality, state-of-the-art skeletal phenotyping services that are not readily supported by individual research grants;
Aim 2 : Provide shared resources, training, and educational services to support new investigators in skeletal biology and to facilitate collaboration among core investigators.

Public Health Relevance

The Skeletal Phenotyping Core will provide state ofthe art|services, training in relevant methodologies and assistance with study design and interpretation of results. The Core will also enhance research by providing access to technologies or expertise that would otherwise not otherwise be available to individual investigators. Through its mentoring of Junior investigators, seminars and hands-on workshops, the Core will enhance the success of established investigators and expand the community of skeletal biologists.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
1P30AR066261-01
Application #
8708415
Study Section
Special Emphasis Panel (ZAR1-XZ (M1))
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
1
Fiscal Year
2014
Total Cost
$290,677
Indirect Cost
$123,621
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Miranda, Daniel L; Putman, Melissa; Kandah, Ruby et al. (2016) A pediatric animal model to evaluate the effects of disuse on musculoskeletal growth and development. J Biomech 49:3549-3554
Liu, Eva S; Martins, Janaina S; Raimann, Adalbert et al. (2016) 1,25-Dihydroxyvitamin D Alone Improves Skeletal Growth, Microarchitecture, and Strength in a Murine Model of XLH, Despite Enhanced FGF23 Expression. J Bone Miner Res 31:929-39
Kim, Sang Wan; Lu, Yanhui; Williams, Elizabeth A et al. (2016) Sclerostin Antibody Administration Converts Bone Lining Cells into Active Osteoblasts. J Bone Miner Res :
Wein, Marc N; Liang, Yanke; Goransson, Olga et al. (2016) SIKs control osteocyte responses to parathyroid hormone. Nat Commun 7:13176
Fan, Yi; Bi, Ruiye; Densmore, Michael J et al. (2016) Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis. FASEB J 30:428-40
Eda, Homare; Santo, Loredana; Wein, Marc N et al. (2016) Regulation of Sclerostin Expression in Multiple Myeloma by Dkk-1: A Potential Therapeutic Strategy for Myeloma Bone Disease. J Bone Miner Res 31:1225-34
Mirzamohammadi, Fatemeh; Papaioannou, Garyfallia; Inloes, Jennifer B et al. (2016) Polycomb repressive complex 2 regulates skeletal growth by suppressing Wnt and TGF-β signalling. Nat Commun 7:12047
Hattersley, Gary; Dean, Thomas; Corbin, Braden A et al. (2016) Binding Selectivity of Abaloparatide for PTH-Type-1-Receptor Conformations and Effects on Downstream Signaling. Endocrinology 157:141-9
Song, Lige; Papaioannou, Garyfallia; Zhao, Hengguang et al. (2016) The Vitamin D Receptor Regulates Tissue Resident Macrophage Response to Injury. Endocrinology 157:4066-4075
Liu, Eva S; Raimann, Adalbert; Chae, Byongsoo Timothy et al. (2016) c-Raf promotes angiogenesis during normal growth plate maturation. Development 143:348-55

Showing the most recent 10 out of 13 publications