The Cancer Cell Biology Program seeks to enable new approaches to cancer pathogenesis and therapy by catalyzing interactions between DF/HCC scientists and clinicians. The overarching goal is to facilitate ""bench-to-bedside" collaborations, bringing basic discoveries into the clinic, and "bedside-to-bench" collaborations, when a deep knowledge of the clinical features of a particular disease helps drive fundamental discovery of pathogenesis mechanisms, ultimately leading to new treatment strategies.
The specific aims of the Cancer Cell Biology Program are to: 1) exploit emerging technologies to elucidate the cellular mechanisms that underlie tumorigenesis;and 2) leverage basic science discoveries to inspire pre-clinical and clinical development of novel therapeutics. The 99 members of this Program are unified through their use of molecular, biochemical, and cell biological approaches to delineate and alter cancer cell behavior. They represent all DF/HCC institutions. In 2009, members received more than a total of $79.3 million in overall grant funding (TC), of which $22.1 million was from NCI and $42.5 million was from other peer-review sponsors. Members published 1,546 publications during the current project period (2006 to 2010), of which 5% were intra-programmatic, 26% were inter-programmatic, and 20% were inter-institutional. Inter- and intra-programmatic collaborations have not only led to the development of novel therapeutics, but have also inspired complementary avenues of basic scientific investigation. In the 2005 CCSG renewal, the program received an outstanding merit score. It is poised to continue that trajectory in the next project period.

Public Health Relevance

New technologies will accelerate the discovery of the mechanisms of tumorigenesis. The coordination of discovery-oriented basic cancer research with efforts to identify and test new cancer drugs will continue to have significant impact on the care of cancer patients. With these interdisciplinary approaches in place, the results of clinical trials can, in turn, refine basic cell biology discovery efforts;ultimately leading to more targeted and individualized therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA006516-47
Application #
8227646
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-05-15
Budget End
2012-11-30
Support Year
47
Fiscal Year
2012
Total Cost
$86,735
Indirect Cost
$69,350
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Hu, Yanhui; Comjean, Aram; Roesel, Charles et al. (2016) FlyRNAi.org-the database of the Drosophila RNAi screening center and transgenic RNAi project: 2017 update. Nucleic Acids Res :
Hong, Theodore S; Wo, Jennifer Y; Yeap, Beow Y et al. (2016) Multi-Institutional Phase II Study of High-Dose Hypofractionated Proton Beam Therapy in Patients With Localized, Unresectable Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. J Clin Oncol 34:460-8
Freedman, Rachel A; Gelman, Rebecca S; Wefel, Jeffrey S et al. (2016) Translational Breast Cancer Research Consortium (TBCRC) 022: A Phase II Trial of Neratinib for Patients With Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer and Brain Metastases. J Clin Oncol 34:945-52
Mohr, Stephanie E; Hu, Yanhui; Ewen-Campen, Benjamin et al. (2016) CRISPR guide RNA design for research applications. FEBS J 283:3232-8
Brunner, Andrew M; Li, Shuli; Fathi, Amir T et al. (2016) Haematopoietic cell transplantation with and without sorafenib maintenance for patients with FLT3-ITD acute myeloid leukaemia in first complete remission. Br J Haematol 175:496-504
Cox, Andrew G; Hwang, Katie L; Brown, Kristin K et al. (2016) Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat Cell Biol 18:886-96
McKay, Tina B; Hjortdal, Jesper; Sejersen, Henrik et al. (2016) Endocrine and Metabolic Pathways Linked to Keratoconus: Implications for the Role of Hormones in the Stromal Microenvironment. Sci Rep 6:25534
Nelms, Bradlee D; Waldron, Levi; Barrera, Luis A et al. (2016) CellMapper: rapid and accurate inference of gene expression in difficult-to-isolate cell types. Genome Biol 17:201
Tan, Justin L; Fogley, Rachel D; Flynn, Ryan A et al. (2016) Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma. Mol Cell 62:34-46
Johnson, Shawn F; Cruz, Cristina; Greifenberg, Ann Katrin et al. (2016) CDK12 Inhibition Reverses De Novo and Acquired PARP Inhibitor Resistance in BRCA Wild-Type and Mutated Models of Triple-Negative Breast Cancer. Cell Rep 17:2367-2381

Showing the most recent 10 out of 303 publications