The mission of the Cancer Immunology Program is to generate new insights into the mechanisms that regulate the anti-tumor immune response and to translate this information into efficacious immunotherapies for cancer patients. The central hypothesis is that a deeper understanding ofthe requirements for effective innate and adaptive host responses will advance the development of treatment strategies that overcome tumor immune escape. The Program is led by G. Dranoff(DFCI) and K. Wucherpfennig (DCFI), and includes 86 faculty members representing all seven member institutions and 13 departments of HMS and HSPH. The Program has been NCI funded since the consortium received its first CCSG in 2000, and was rated outstanding at the last CCSG renewal in 2005. In the current budget year, Program members generated $37.5 million (total costs) in peer-reviewed grant support, with $8.4 million in funding from the NCI. The total number of publications from members of the Program over the project period was 1,508 (2006 to 2010);14% were intra-programmatic, 24% were inter-programmatic and 18% were inter-institutional. Thematically. the Program is broadly divided into investigative efforts in bone marrow transplantation, adoptive cellular therapies and cancer vaccines. Regular workshops serve to disseminate ongoing research findings, increase knowledge of cancer immunology within the Harvard Immunology community and stimulate collaborations among basic and clinical scientists. An active clinical immunotherapy program across the Dana-Farber/Harvard Cancer Center institutions provides interactions and collaborations between the Program and numerous disease-focused Programs. Multiple DF/HCC Shared Resources advance the Program's research and clinical activities. During the current project period, the Program has had three specific aims. These are: 1. To increase our understanding of the immune mechanisms that contribute to tumor development. 2. To improve the therapeutic activity and minimize the toxicities of bone marrow transplantation and adoptive cellular therapies. 3. To improve the therapeutic activity and minimize the toxicities of cancer vaccines.

Public Health Relevance

The Cancer Immunology Program of DF/HCC aims to generate new information about the immune response to cancer and then to apply this knowledge to advance the development of efficacious and safe immunotherapies. The Program brings together laboratory and clinical scientists to accelerate the translation of basic discoveries in immunology to the improvement of patient outcomes.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA006516-48
Application #
8469414
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
48
Fiscal Year
2013
Total Cost
$85,483
Indirect Cost
$63,431
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Yao, Lina; Seaton, Sarah Craven; Ndousse-Fetter, Sula et al. (2018) A selective gut bacterial bile salt hydrolase alters host metabolism. Elife 7:
Jalbut, Marla M; Brunner, Andrew M; Amrein, Philip C et al. (2018) Early infectious complications among patients treated with induction compared to hypomethylating therapy for acute myeloid leukemia. Leuk Lymphoma 59:988-991
Tapela, Neo M; Peluso, Michael J; Kohler, Racquel E et al. (2018) A Step Toward Timely Referral and Early Diagnosis of Cancer: Implementation and Impact on Knowledge of a Primary Care-Based Training Program in Botswana. Front Oncol 8:187
Roemer, Margaretha G M; Redd, Robert A; Cader, Fathima Zumla et al. (2018) Major Histocompatibility Complex Class II and Programmed Death Ligand 1 Expression Predict Outcome After Programmed Death 1 Blockade in Classic Hodgkin Lymphoma. J Clin Oncol 36:942-950
Francini, Edoardo; Gray, Kathryn P; Xie, Wanling et al. (2018) Time of metastatic disease presentation and volume of disease are prognostic for metastatic hormone sensitive prostate cancer (mHSPC). Prostate 78:889-895
Hu, Yanhui; Vinayagam, Arunachalam; Nand, Ankita et al. (2018) Molecular Interaction Search Tool (MIST): an integrated resource for mining gene and protein interaction data. Nucleic Acids Res 46:D567-D574
Mohr, Stephanie E; Rudd, Kirstin; Hu, Yanhui et al. (2018) Zinc Detoxification: A Functional Genomics and Transcriptomics Analysis in Drosophila melanogaster Cultured Cells. G3 (Bethesda) 8:631-641
Odiaka, Emeka; Lounsbury, David W; Jalloh, Mohamed et al. (2018) Effective Project Management of a Pan-African Cancer Research Network: Men of African Descent and Carcinoma of the Prostate (MADCaP). J Glob Oncol :1-12
Mills, Evanna L; Pierce, Kerry A; Jedrychowski, Mark P et al. (2018) Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560:102-106
Oser, Matthew G; Fonseca, Raquel; Chakraborty, Abhishek A et al. (2018) Cells Lacking the RB1 Tumor Suppressor Gene are Hyperdependent on Aurora B Kinase for Survival. Cancer Discov :

Showing the most recent 10 out of 411 publications