The Cancer Proteomics Core pushes the limits of proteomics and metabolomics technologies and specializes in cancer projects utilizing blood, urine, cerebrospinal fluid, saliva, cyst fluids, interstitial fluids, cell and tissue extracts to: gain insight into cancer processes;discover new biomarkers for early detection, diagnosis, prognosis and outcome prediction;study population effects;manage clinical trials;evaluate drug efficacy and toxicity;stratify patients;identify tumor antigens;and accelerate drug development. A unique aspect of the CPC has been its expertise in basic, translational and clinical cancer research, as well as in proteomics, metabolomics, systems biology, and bioinformatics. Unlike other proteomics facilities, the staff is able to provide expertise in all aspects of cancer research, as well as study design and data analysis and understands the complexities and challenges of proteomics projects. The Core was first approved as an Established Shared Resource in the CCSG renewal application. It has been directed by Towia Libermann, PhD, since its founding in 2004. This facility has grown considerably during the project period, with a steady increase in usage. Director: Towia Libermann, PhD(BIDMC) Category: 1.36 (Proteomics) Management: Joint (Cancer Center and Institutional)

Public Health Relevance

The Core provides investigators involved in clinical and translational studies with access to comprehensive high sensitivity, high resolution and high throughput proteomics and metabolomics services. There is particular emphasis on clinical sample analysis and in-depth scientific consultation in proteomics, metabolomics and data analysis. Basic researchers who are exploring signaling pathways and other aspects of cancer biology are also able to receive access to sophisticated proteomic and metabolomic services and expert consultation.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA006516-48
Application #
8469423
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
48
Fiscal Year
2013
Total Cost
$255,155
Indirect Cost
$63,430
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Agoston, Agoston T; Pham, Thai H; Odze, Robert D et al. (2018) Columnar-Lined Esophagus Develops via Wound Repair in a Surgical Model of Reflux Esophagitis. Cell Mol Gastroenterol Hepatol 6:389-404
Barber, Lauren; Gerke, Travis; Markt, Sarah C et al. (2018) Family History of Breast or Prostate Cancer and Prostate Cancer Risk. Clin Cancer Res 24:5910-5917
Kwee, Brian J; Budina, Erica; Najibi, Alexander J et al. (2018) CD4 T-cells regulate angiogenesis and myogenesis. Biomaterials 178:109-121
Madsen, Thomas; Braun, Danielle; Peng, Gang et al. (2018) Efficient computation of the joint probability of multiple inherited risk alleles from pedigree data. Genet Epidemiol 42:528-538
Chen, Jingjing; Guccini, Ilaria; Di Mitri, Diletta et al. (2018) Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer. Nat Genet 50:219-228
Li, Andrew G; Murphy, Elizabeth C; Culhane, Aedin C et al. (2018) BRCA1-IRIS promotes human tumor progression through PTEN blockade and HIF-1? activation. Proc Natl Acad Sci U S A 115:E9600-E9609
McBrayer, Samuel K; Mayers, Jared R; DiNatale, Gabriel J et al. (2018) Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell 175:101-116.e25
Stopsack, Konrad H; Gonzalez-Feliciano, Amparo G; Peisch, Samuel F et al. (2018) A Prospective Study of Aspirin Use and Prostate Cancer Risk by TMPRSS2:ERG Status. Cancer Epidemiol Biomarkers Prev 27:1231-1233
Kamareddine, Layla; Wong, Adam C N; Vanhove, Audrey S et al. (2018) Activation of Vibrio cholerae quorum sensing promotes survival of an arthropod host. Nat Microbiol 3:243-252
Schilit, Samantha L P; Morton, Cynthia C (2018) 3C-PCR: a novel proximity ligation-based approach to phase chromosomal rearrangement breakpoints with distal allelic variants. Hum Genet 137:55-62

Showing the most recent 10 out of 411 publications