The mission of the High-Throughput Polymorphism Detection Core is to provide services to DF/HCC investigators conducting molecular analyses of germline DNA collected as part of a wide range of investigations into the molecular epidemiology of cancer, including Genome Wide Association Studies (GWAS). This facility provides high-throughput assays of specific gene mutations and polymorphisms (SNPs) in the many situations where previously defined specific nucleotide alterations are of interest. The Core was established in 2001 and has been funded by the CCSG since the last compefitive renewal in 2005. Director: Immaculata De Vivo, MPH, PhD(BWH) Category: 1.16 (Genetics) IVlanagement: Joint (Cancer Center and Institutional)

Public Health Relevance

As a part of the DF/HCC, the High-Throughput Polymorphism Detection Core is fortunate to have a large community of Population Science and Clinical researchers who are conducting case-control and cohort studies of a wide variety of cancers. These researchers need to be able to genotype substantial numbers of SNPs in their studies. The Core exists to enable these studies at the lowest possible cost and highest possible quality.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA006516-48
Application #
8469436
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
48
Fiscal Year
2013
Total Cost
$250,439
Indirect Cost
$63,430
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Hu, Yanhui; Comjean, Aram; Roesel, Charles et al. (2016) FlyRNAi.org-the database of the Drosophila RNAi screening center and transgenic RNAi project: 2017 update. Nucleic Acids Res :
Hong, Theodore S; Wo, Jennifer Y; Yeap, Beow Y et al. (2016) Multi-Institutional Phase II Study of High-Dose Hypofractionated Proton Beam Therapy in Patients With Localized, Unresectable Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. J Clin Oncol 34:460-8
Freedman, Rachel A; Gelman, Rebecca S; Wefel, Jeffrey S et al. (2016) Translational Breast Cancer Research Consortium (TBCRC) 022: A Phase II Trial of Neratinib for Patients With Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer and Brain Metastases. J Clin Oncol 34:945-52
Mohr, Stephanie E; Hu, Yanhui; Ewen-Campen, Benjamin et al. (2016) CRISPR guide RNA design for research applications. FEBS J 283:3232-8
Brunner, Andrew M; Li, Shuli; Fathi, Amir T et al. (2016) Haematopoietic cell transplantation with and without sorafenib maintenance for patients with FLT3-ITD acute myeloid leukaemia in first complete remission. Br J Haematol 175:496-504
Cox, Andrew G; Hwang, Katie L; Brown, Kristin K et al. (2016) Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat Cell Biol 18:886-96
McKay, Tina B; Hjortdal, Jesper; Sejersen, Henrik et al. (2016) Endocrine and Metabolic Pathways Linked to Keratoconus: Implications for the Role of Hormones in the Stromal Microenvironment. Sci Rep 6:25534
Nelms, Bradlee D; Waldron, Levi; Barrera, Luis A et al. (2016) CellMapper: rapid and accurate inference of gene expression in difficult-to-isolate cell types. Genome Biol 17:201
Tan, Justin L; Fogley, Rachel D; Flynn, Ryan A et al. (2016) Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma. Mol Cell 62:34-46
Johnson, Shawn F; Cruz, Cristina; Greifenberg, Ann Katrin et al. (2016) CDK12 Inhibition Reverses De Novo and Acquired PARP Inhibitor Resistance in BRCA Wild-Type and Mutated Models of Triple-Negative Breast Cancer. Cell Rep 17:2367-2381

Showing the most recent 10 out of 303 publications