The DF/HCC Leukemia Program continues to focus on advancing the understanding of molecular pathogenesis as a means to define novel pathways and protein targets that can be inhibited to improve the outcome of patients with acute leukemias, myelodysplastic syndromes and myeloproliferative neoplasms. The long-range goal of the Program is to accelerate the translation of novel discoveries from the laboratory to the clinic, first into preclinical testing in animal models and then into innovative, investigator-initiated Phase I or 11 clinical trials. The Program's Specific Aims are: 1) to identify novel cellular and molecular mechanisms that contribute to the pathogenesis of leukemia and related diseases;2) to generate accurate animal models of leukemia to improve the understanding of pathogenesis and to develop targeted anti-leukemic agents;and 3) to design and implement clinical trials to translate laboratory research discoveries made within the Leukemia Program and the Cancer Center as a whole. The Leukemia Program has been CCSG funded since 2000. The Program received an outstanding merit score at the time of the last competitive review in 2005. The 60 Program members represent four departments of HMS, one department of HSPH and six DF/HCC member institutions. The Program continues to be well-funded with $35.6 million in peer-reviewed funding, of which $16 million was from the NCI and $19.6 million was other peer reviewed funding (2009, total costs). Program members had 879 in Program-relevant publications from 2006 through 2010. Of these 16% were intra-programmatic interactions, 43% were inter-programmatic and 27% were inter-institutional.

Public Health Relevance

Acute leukemias, myelodysplastic syndromes and myeloproliferative neoplasms represent major causes of cancer deaths each year in the United States. The Program seeks to understand how leukemia cells are disrupted to initiate and maintain the cancer phenotype and to translate these important discoveries into clinical trials to improve patient outcomes.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA006516-48S3
Application #
8710588
Study Section
Subcommittee G - Education (NCI)
Project Start
2012-12-01
Project End
2016-11-30
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
48
Fiscal Year
2013
Total Cost
$12,500
Indirect Cost
$5,357
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Lin, Ruei-Zeng; Lee, Chin Nien; Moreno-Luna, Rafael et al. (2017) Host non-inflammatory neutrophils mediate the engraftment of bioengineered vascular networks. Nat Biomed Eng 1:
Wang, Meng; Han, Jing; Marcar, Lynnette et al. (2017) Radiation Resistance in KRAS-Mutated Lung Cancer Is Enabled by Stem-like Properties Mediated by an Osteopontin-EGFR Pathway. Cancer Res 77:2018-2028
Ignatius, Myron S; Hayes, Madeline N; Lobbardi, Riadh et al. (2017) The NOTCH1/SNAIL1/MEF2C Pathway Regulates Growth and Self-Renewal in Embryonal Rhabdomyosarcoma. Cell Rep 19:2304-2318
Nugent, Alicia A; Park, Jong G; Wei, Yan et al. (2017) Mutant ?2-chimaerin signals via bidirectional ephrin pathways in Duane retraction syndrome. J Clin Invest 127:1664-1682
Breitkopf, Susanne B; Taveira, Mateus De Oliveira; Yuan, Min et al. (2017) Serial-omics of P53-/-, Brca1-/- Mouse Breast Tumor and Normal Mammary Gland. Sci Rep 7:14503
Bowden, John A; Heckert, Alan; Ulmer, Candice Z et al. (2017) Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma. J Lipid Res 58:2275-2288
Lindsley, R Coleman; Saber, Wael; Mar, Brenton G et al. (2017) Prognostic Mutations in Myelodysplastic Syndrome after Stem-Cell Transplantation. N Engl J Med 376:536-547
Mita, Monica M; Mita, Alain C; Moseley, Jennifer L et al. (2017) Phase 1 safety, pharmacokinetic and pharmacodynamic study of the cyclin-dependent kinase inhibitor dinaciclib administered every three weeks in patients with advanced malignancies. Br J Cancer 117:1258-1268
Hu, Yuebi; Alden, Ryan S; Odegaard, Justin I et al. (2017) Discrimination of Germline EGFR T790M Mutations in Plasma Cell-Free DNA Allows Study of Prevalence Across 31,414 Cancer Patients. Clin Cancer Res 23:7351-7359
Lam, Hilaire C; Liu, Heng-Jia; Baglini, Christian V et al. (2017) Rapamycin-induced miR-21 promotes mitochondrial homeostasis and adaptation in mTORC1 activated cells. Oncotarget 8:64714-64727

Showing the most recent 10 out of 371 publications