The capability to develop new anti-cancer agents is essential to the mission of the Cancer Center. The Translational Pharmacology and Early Therapeutic Trials (TPETT) Program accomplishes this by: 1) supporting the preclinical development of anti-cancer agents identified by DF/HCC investigators, and 2) defining the toxicity, pharmacokinetics and pharmacodynamics of new agents from the Center, NCI and pharmaceutical companies In Early Phase trials. The overall objective of the TPETT Program is, thus, to foster a coordinated effort: through which promising new leads and agents are developed for evaluation in Early Phase clinical trials and then in Phase 11 in conjunction with the Clinical-based Programs. The Program facilitates the development of anti-cancer agents by combining basic science and clinical resources at the DFCI, MGH, BWH, BIDMC and CHB.
Its Specific Aims are to: 1) strengthen and expand preclinical drug discovery and development efforts;2) perform translational studies to identify responsive subsets of tumors and confirm mechanism of action in the clinic;3) conduct Phase I, l-ll pharmacokinetic/pharmacodynamic trials of new anti-cancer agents with correlative laboratory and imaging studies to define biological endpoints and mechanisms;and 4) develop biomarkers for drug response, resistance and toxicity. The 49 members of this program represent six DF/HCC institutions and eight departments of HMS. In 2009, members received $10.4 million (total costs) in cancer-relevant funding, including $2.7 million from NCI and $370,000 from other peer-reviewed sponsors. In addition, members published 500 papers during the project period (2006 to 2010), of which 12.4% were intra-programmatic, 50% were inter-programmatic, and 25.4% were inter-institutional. The Program has been continuously funded as a CCSG Program for ten years. At the time of the last competitive renewal in 2005, the Program received Excellent merit.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Chen, Yi-Bin; Batchelor, Tracy; Li, Shuli et al. (2015) Phase 2 trial of high-dose rituximab with high-dose cytarabine mobilization therapy and high-dose thiotepa, busulfan, and cyclophosphamide autologous stem cell transplantation in patients with central nervous system involvement by non-Hodgkin lymphoma. Cancer 121:226-33
Waldron, Levi; Haibe-Kains, Benjamin; Culhane, Aedín C et al. (2014) Comparative meta-analysis of prognostic gene signatures for late-stage ovarian cancer. J Natl Cancer Inst 106:
Yilmazel, Bahar; Hu, Yanhui; Sigoillot, Frederic et al. (2014) Online GESS: prediction of miRNA-like off-target effects in large-scale RNAi screen data by seed region analysis. BMC Bioinformatics 15:192
Mazzola, Emanuele; Chipman, Jonathan; Cheng, Su-Chun et al. (2014) Recent BRCAPRO upgrades significantly improve calibration. Cancer Epidemiol Biomarkers Prev 23:1689-95
Zhao, Sihai Dave; Parmigiani, Giovanni; Huttenhower, Curtis et al. (2014) Más-o-menos: a simple sign averaging method for discrimination in genomic data analysis. Bioinformatics 30:3062-9
Parkhitko, Andrey A; Priolo, Carmen; Coloff, Jonathan L et al. (2014) Autophagy-dependent metabolic reprogramming sensitizes TSC2-deficient cells to the antimetabolite 6-aminonicotinamide. Mol Cancer Res 12:48-57
Cheng, Long; Desai, Jigar; Miranda, Carlos J et al. (2014) Human CFEOM1 mutations attenuate KIF21A autoinhibition and cause oculomotor axon stalling. Neuron 82:334-49
Akbay, Esra A; Moslehi, Javid; Christensen, Camilla L et al. (2014) D-2-hydroxyglutarate produced by mutant IDH2 causes cardiomyopathy and neurodegeneration in mice. Genes Dev 28:479-90
Brunner, Andrew M; Blonquist, Traci M; Sadrzadeh, Hossein et al. (2014) Population-based disparities in survival among patients with core-binding factor acute myeloid leukemia: a SEER database analysis. Leuk Res 38:773-80
Karamichos, D; Hutcheon, A E K; Rich, C B et al. (2014) In vitro model suggests oxidative stress involved in keratoconus disease. Sci Rep 4:4608

Showing the most recent 10 out of 177 publications