The Cancer Genetics Program's overall mission is to expand the understanding of the genetic underpinnings of cancer development, and to use this information to improve the care of cancer patients. To advance this mission, the Program has assembled a large and vibrant membership, including investigators with a broad range of scientific interests in all major aspects of cancer genetics, such as: cancer gene discovery in both human cancer samples and model organisms, technology development and efficient application of high throughput DNA sequencing, detailed cancer genome analysis, high throughput approaches to cancer gene analysis and annotation, identification and analysis of both cancer initiating cells and induced pluripotent stem cells, clinical cancer genetics and risk counseling, and development and use of CLIA-certified testing for clinically relevant cancer diagnostics.
The specific aims of the Program are to: 1. Support the discovery of new genes and cellular pathways implicated in cancer. 2. Enhance identification and understanding of the germline genetic variations that influence cancer risk and response to therapy. 3. Increase the understanding of the full spectrum of somatic mutation that occurs in cancer and how it contributes to the genesis and progression of cancer. 4. Support the translation of these research findings to both clinical research in oncology and routine cancer patient care. The Program has been funded by the CCSG since 2000 when DF/HCC was established, and received an "Outstanding" merit score at the last renewal in 2005. The Program's membership includes 100 investigators, representing all seven institutions in the consortium, 14 departments of HMS, and one department of HSPH. In 2009, the Program received $52.5 million in cancer-relevant funding (total costs), which includes $18.5 million from NCI and $25 million from other peer-reviewed sponsors. Program members have published 1,630 publications over the project period (2006 to 2010), of which 9% were intra-programmatic, 44% were inter-programmatic and 32% were inter-institutional.

Public Health Relevance

The Cancer Genetics Program aims to expand the understanding of the genetic underpinnings of cancer development, and to use this information to improve the care of cancer patients. The Program brings together laboratory and clinical scientists to accelerate the translation of basic discoveries in genetics to the improvement of patient outcomes.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA006516-49
Application #
8601457
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
49
Fiscal Year
2014
Total Cost
$81,472
Indirect Cost
$60,778
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Chen, Yi-Bin; Batchelor, Tracy; Li, Shuli et al. (2015) Phase 2 trial of high-dose rituximab with high-dose cytarabine mobilization therapy and high-dose thiotepa, busulfan, and cyclophosphamide autologous stem cell transplantation in patients with central nervous system involvement by non-Hodgkin lymphoma. Cancer 121:226-33
Waldron, Levi; Haibe-Kains, Benjamin; Culhane, Aedín C et al. (2014) Comparative meta-analysis of prognostic gene signatures for late-stage ovarian cancer. J Natl Cancer Inst 106:
Yilmazel, Bahar; Hu, Yanhui; Sigoillot, Frederic et al. (2014) Online GESS: prediction of miRNA-like off-target effects in large-scale RNAi screen data by seed region analysis. BMC Bioinformatics 15:192
Mazzola, Emanuele; Chipman, Jonathan; Cheng, Su-Chun et al. (2014) Recent BRCAPRO upgrades significantly improve calibration. Cancer Epidemiol Biomarkers Prev 23:1689-95
Zhao, Sihai Dave; Parmigiani, Giovanni; Huttenhower, Curtis et al. (2014) Más-o-menos: a simple sign averaging method for discrimination in genomic data analysis. Bioinformatics 30:3062-9
Parkhitko, Andrey A; Priolo, Carmen; Coloff, Jonathan L et al. (2014) Autophagy-dependent metabolic reprogramming sensitizes TSC2-deficient cells to the antimetabolite 6-aminonicotinamide. Mol Cancer Res 12:48-57
Cheng, Long; Desai, Jigar; Miranda, Carlos J et al. (2014) Human CFEOM1 mutations attenuate KIF21A autoinhibition and cause oculomotor axon stalling. Neuron 82:334-49
Akbay, Esra A; Moslehi, Javid; Christensen, Camilla L et al. (2014) D-2-hydroxyglutarate produced by mutant IDH2 causes cardiomyopathy and neurodegeneration in mice. Genes Dev 28:479-90
Brunner, Andrew M; Blonquist, Traci M; Sadrzadeh, Hossein et al. (2014) Population-based disparities in survival among patients with core-binding factor acute myeloid leukemia: a SEER database analysis. Leuk Res 38:773-80
Karamichos, D; Hutcheon, A E K; Rich, C B et al. (2014) In vitro model suggests oxidative stress involved in keratoconus disease. Sci Rep 4:4608

Showing the most recent 10 out of 177 publications