Developmental funds are a major source of flexible funding for the Sidney Kimmel Comprehensive Cancer Center (SKCCC). These funds have allowed the Center to strengthen its scientific programs and provide scientists the opportunity to explore innovative ideas and new collaborations. These funds are critical to maintaining and extending the research vitality of the scientific programs in the SKCCC. Use of these funds is tightly linked to the formal planning and evaluation activifies of the Center. A review of the priority of programmatic needs for new faculty recruitment by the Director, Associate Directors and Program Leaders has resulted in this esfimated allocation of development funds per year during this next CCSG cycle to new faculty investigators $400,000 (66.7%), pilot projects $100,000 (16.6%), and shared resource development $100,000 (16.7%). Funds in the amount of $600,000 in Developmental Funds per year are requested. These funds will be instrumental in achieving the goals of SKCCC's strategic planning. Given the expansion in the SKCCC's research programs and sponsored funding (an increase of over 100% in the last five years), this increase can be justified.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA006973-50
Application #
8559778
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
50
Fiscal Year
2013
Total Cost
$427,516
Indirect Cost
$163,616
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Zeidner, Joshua F; Zahurak, Marianna; Rosner, Gary L et al. (2015) The evolution of treatment strategies for patients with chronic myeloid leukemia relapsing after allogeneic bone marrow transplant: can tyrosine kinase inhibitors replace donor lymphocyte infusions? Leuk Lymphoma 56:128-34
Penet, Marie-France; Shah, Tariq; Bharti, Santosh et al. (2015) Metabolic imaging of pancreatic ductal adenocarcinoma detects altered choline metabolism. Clin Cancer Res 21:386-95
Sharabi, Andrew B; Nirschl, Christopher J; Kochel, Christina M et al. (2015) Stereotactic Radiation Therapy Augments Antigen-Specific PD-1-Mediated Antitumor Immune Responses via Cross-Presentation of Tumor Antigen. Cancer Immunol Res 3:345-55
Peltonen, Karita; Colis, Laureen; Liu, Hester et al. (2014) A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. Cancer Cell 25:77-90
DeZern, Amy E; Guinan, Eva C (2014) Aplastic anemia in adolescents and young adults. Acta Haematol 132:331-9
Paller, Channing J; Wissing, Michel D; Mendonca, Janet et al. (2014) Combining the pan-aurora kinase inhibitor AMG 900 with histone deacetylase inhibitors enhances antitumor activity in prostate cancer. Cancer Med 3:1322-35
Maldonado, Leonel; Teague, Jessica E; Morrow, Matthew P et al. (2014) Intramuscular therapeutic vaccination targeting HPV16 induces T cell responses that localize in mucosal lesions. Sci Transl Med 6:221ra13
Schweizer, Michael T; Antonarakis, Emmanuel S (2014) Chemotherapy and its evolving role in the management of advanced prostate cancer. Asian J Androl 16:334-40
Huang, Peng; Ou, Ai-hua; Piantadosi, Steven et al. (2014) Formulating appropriate statistical hypotheses for treatment comparison in clinical trial design and analysis. Contemp Clin Trials 39:294-302
Bhatnagar, Akrita; Wang, Yuchuan; Mease, Ronnie C et al. (2014) AEG-1 promoter-mediated imaging of prostate cancer. Cancer Res 74:5772-81

Showing the most recent 10 out of 357 publications