The Clinical Research Office (CRO) provides numerous services to faculty and staff conducting oncology research at the Sidney Kimmel Comprehensive Cancer Center (SKCCC). The CRO has a key leadership role in the SKCCC research infrastructure, with the CRO Director overseeing and integrating activities among the several Clinical Research Cores. The Program Managers of the seven disease-specific research Programs and the SAC lab Manager have a dual-reporting relationship to both the Research Program Directors and the CRO Manager. This allows for a centralized research infrastructure yet at the same time allows disease-specific Programs flexibility based on the disease(s) being studies. Centralized and integrated CRO electronic resources include (1) a Clinical Research Management System (CRMS) tracking real time accrual to all oncology research studies, (2) a Protocol Library containing all active protocols, consents, order sets, and related documents, (3) a Pharmacy Research Orders Tracking/Approval System (POTS), (4) the Protocol Review and Monitoring System-Clinical Research Review Committee (PRMSCRC) Electronic Forum tracking documents, scientific review comments, and meeting outcomes from the weekly pre-PRMS-CRC (pre-Protocol Review and Monitoring System) and CRC (Protocol Review and Monitoring System) meetings, (5) a Standard Operating Procedures website for housing recommended clinical research methods and procedures, (6) a Regulatory Documents Warehouse to provide centralized access to common regulatory documents including clinical investigator CVs and laboratory certifications, and (7) an external SKCCC Clinical Trials website to facilitate web-based clinical trials searches by the community. Education provided by the CRO includes an introductory research course for all new research staff involved in oncology clinical trials, CRMS training, and continuing research education for research faculty and staff. The CRO provides regulatory expertise regarding FDA regulations and Investigational New Drug (IND) submissions, and internal regulatory oversight and guidance for all investigator-initiated trials. Quality assurance services are an essential component of the CRO via auditing and monitoring and developing standard operating procedures. The CRO acts as a liaison with the Johns Hopkins Institutional Review Boards, outside auditors and regulatory agencies. In 2010, there were 499 active research studies, including 319 therapeutic (354 Intervention) clinical trials. Accruals in 2010 totaled 6,386;including 5,036 to non-intervention studies and 1,350 to intervention trials. Lay: The Clinical Research Office (CRO) provides a centralized infrastructure for the conduct of clinical trials, including formal education programs, regulatory expertise, auditing, and databases such as a Protocol Library;a Clinical Research Management System (CRMS) for tracking enrollment, and a Pharmacy Orders Tracking System (POTS). The CRO plays a key role in integrating activities among the other clinical research cores. SKCCC Managed Shared Resource Current Grant Year Reporting Period: January 1, 2010 to December 31, 2010.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
United States
Zip Code
Isenberg, Sarina R; Lu, Chunhua; McQuade, John et al. (2017) Impact of a New Palliative Care Program on Health System Finances: An Analysis of the Palliative Care Program Inpatient Unit and Consultations at Johns Hopkins Medical Institutions. J Oncol Pract 13:e421-e430
Husain, Hatim; Velculescu, Victor E (2017) Cancer DNA in the Circulation: The Liquid Biopsy. JAMA 318:1272-1274
Holdhoff, Matthias; Cairncross, Gregory J; Kollmeyer, Thomas M et al. (2017) Genetic landscape of extreme responders with anaplastic oligodendroglioma. Oncotarget 8:35523-35531
Oh, Min-Hee; Collins, Samuel L; Sun, Im-Hong et al. (2017) mTORC2 Signaling Selectively Regulates the Generation and Function of Tissue-Resident Peritoneal Macrophages. Cell Rep 20:2439-2454
Klein, Orly R; Buddenbaum, Jessica; Tucker, Noah et al. (2017) Nonmyeloablative Haploidentical Bone Marrow Transplantation with Post-Transplantation Cyclophosphamide for Pediatric and Young Adult Patients with High-Risk Hematologic Malignancies. Biol Blood Marrow Transplant 23:325-332
Johnson 3rd, Burles A; Yarchoan, Mark; Lee, Valerie et al. (2017) Strategies for Increasing Pancreatic Tumor Immunogenicity. Clin Cancer Res 23:1656-1669
Antonarakis, Emmanuel S; Lu, Changxue; Luber, Brandon et al. (2017) Clinical Significance of Androgen Receptor Splice Variant-7 mRNA Detection in Circulating Tumor Cells of Men With Metastatic Castration-Resistant Prostate Cancer Treated With First- and Second-Line Abiraterone and Enzalutamide. J Clin Oncol 35:2149-2156
Cohen, Joshua D; Javed, Ammar A; Thoburn, Christopher et al. (2017) Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc Natl Acad Sci U S A 114:10202-10207
McCurdy, Shannon R; Kasamon, Yvette L; Kanakry, Christopher G et al. (2017) Comparable composite endpoints after HLA-matched and HLA-haploidentical transplantation with post-transplantation cyclophosphamide. Haematologica 102:391-400
Isella, Claudio; Brundu, Francesco; Bellomo, Sara E et al. (2017) Selective analysis of cancer-cell intrinsic transcriptional traits defines novel clinically relevant subtypes of colorectal cancer. Nat Commun 8:15107

Showing the most recent 10 out of 2207 publications