Research in cancer immunology at the Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University (JHU) has undergone a natural progression from basic laboratory studies of the host immune response to cancer to the clinical evaluation of immune-based cancer therapies. Many of these immune-based strategies to mobilize and augment the anti-tumor immune response were founded on the discoveries made by JHU investigators. Moreover, the application of immunotherapeutic strategies as an adjunct to cancer treatment across a wide range of malignancies and therapeutic settings has expanded dramatically over the past several years. The ability to carefully and reliably quantify the human immune response is critically important to assess the impact of any immunotherapeutic strategy. While there is great diversity in the therapeutic modalities being studied, most areas, in fact, overlap strongly in their techniques and approaches to immunological analysis. Modern immunological techniques for characterizing and quantifying human immune responses are complex, and it is difficult for individual investigators to assemble all the techniques that may be most appropriate for a particular project. The Human Immunology Core Laboratory (HICL) was established in 2005 to provide SKCCC investigators the capacity to reliably monitor and quantify human immune responses using state-of-the-art immunologic assays. Thus, the specific goals of this CORE are to: 1) Provide technical expertise and conduct immunological assays to monitor and characterize the human immune responses;2) Establish standard operating procedures and quality control measures for all immunological assays;3) Communicate its expertise and availability to SKCCC investigators;4) Provide technical support to SKCCC investigators seeking to identify and develop assays specific to their research objectives, and 5) Serve as a repository for key reagents and cell lines useful for the study of human immunology. Taken together, the HICL plays an important role in monitoring human immune responses that crosses many disciplines within the SKCCC and provides for the development of new therapeutic approaches to augment the anti-tumor immune response. Lay: The Human Immunology Core Laboratory identifies different subsets of lymphocytes that participate in the immune response to cancer and assesses their function and their ability to produce inflammatory cytokines that amplify the immune response. By tracking or monitoring the immune response, the Human Immunology Core Laboratory can assist investigators assess the impact or influence of their therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA006973-51
Application #
8661014
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
51
Fiscal Year
2014
Total Cost
$70,761
Indirect Cost
$27,170
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Castanares, Mark A; Copeland, Ben T; Chowdhury, Wasim H et al. (2016) Characterization of a novel metastatic prostate cancer cell line of LNCaP origin. Prostate 76:215-25
Anders, Nicole M; Wanjiku, Teresia M; He, Ping et al. (2016) A robust and rapid liquid chromatography tandem mass spectrometric method for the quantitative analysis of 5-azacytidine. Biomed Chromatogr 30:494-6
Morgan, Michael T; Haj-Yahya, Mahmood; Ringel, Alison E et al. (2016) Structural basis for histone H2B deubiquitination by the SAGA DUB module. Science 351:725-8
Hurley, Paula J; Sundi, Debasish; Shinder, Brian et al. (2016) Germline Variants in Asporin Vary by Race, Modulate the Tumor Microenvironment, and Are Differentially Associated with Metastatic Prostate Cancer. Clin Cancer Res 22:448-58
Roberts, Nicholas J; Norris, Alexis L; Petersen, Gloria M et al. (2016) Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discov 6:166-75
Chen, Zhihang; Penet, Marie-France; Krishnamachary, Balaji et al. (2016) PSMA-specific theranostic nanoplex for combination of TRAIL gene and 5-FC prodrug therapy of prostate cancer. Biomaterials 80:57-67
Wang, Zhijun; Hansis, Eberhard; Chen, Rongxin et al. (2016) Automatic bone removal for 3D TACE planning with C-arm CBCT: Evaluation of technical feasibility. Minim Invasive Ther Allied Technol 25:162-70
Vrooman, Lynda M; Kirov, Ivan I; Dreyer, ZoAnn E et al. (2016) Activity and Toxicity of Intravenous Erwinia Asparaginase Following Allergy to E. coli-Derived Asparaginase in Children and Adolescents With Acute Lymphoblastic Leukemia. Pediatr Blood Cancer 63:228-33
Sutcliffe, Siobhan; Nevin, Remington L; Pakpahan, Ratna et al. (2016) Infectious mononucleosis, other infections and prostate-specific antigen concentration as a marker of prostate involvement during infection. Int J Cancer 138:2221-30
Clarke, Megan A; Coutinho, Francesca; Phelan-Emrick, Darcy F et al. (2016) Predictors of Human Papillomavirus Vaccination in a Large Clinical Population of Males Aged 11 to 26 years in Maryland, 2012-2013. Cancer Epidemiol Biomarkers Prev 25:351-8

Showing the most recent 10 out of 1943 publications