Molecular Cytogenetics enables the analysis of chromosomal changes over a broad range of focus, from whole genome composition or organization to specific gene copy number or location. It provides a comprehensive genomic context for global or targeted cell biology studies. In contrast to most other approaches, it enables a cell-by-cell survey of chromosomal content, revealing heterogeneity and possible associations within that heterogeneity. Thus cytogenetic analysis remains a simple and efficient first step towards identifying novel areas of genomic change. The Molecular Cytogenetics Core provides MSKCC investigators with effective chromosome-based analyses for human or research animal cells. It processes samples from primary cells, cell lines, or archival tissue, performs chromosome analysis on research samples, using conventional Cytogenetics (chromosome banding and karyotyping) and molecular Cytogenetics procedures based on fluorescence in situ hybridization (FISH), including Spectral Karyotyping (SKY). The Core staff works with investigators to design the most appropriate and efficient analysis for their needs and produces customized probes for specific projects. The Core has assembled a broad range of molecular Cytogenetics resources for human and mouse analysis, including plasmid and BAG clone stocks, as well as chromosome paints. Chromosome analysis is an integral part of research focusing on genomic instability. The Core's experience in karyotyping and chromosome identification provides valuable support to investigators attempting to understand the basis of chromosomal instability in cancer. In addition to specific research applications, the Core also provides an essential function in maintaining Good Laboratory Practice for MSKCC research projects that use cultured cell lines. Karyotype analysis provides basic confirmation and documentation of cell line identity, and is used to monitor chromosomal integrity.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sloan-Kettering Institute for Cancer Research
New York
United States
Zip Code
Basaraba, Cale N; Westhoff, Carolyn L; Pike, Malcolm C et al. (2017) Estimating systemic exposure to levonorgestrel from an oral contraceptive. Contraception 95:398-404
Hernandez, Jonathan M; Beylergil, Volkan; Goldman, Debra A et al. (2017) Post-Treatment/Pre-operative PET Response Is Not an Independent Predictor of Outcomes for Patients With Gastric and GEJ Adenocarcinoma. Ann Surg :
Argani, Pedram; Kao, Yu-Chien; Zhang, Lei et al. (2017) Primary Renal Sarcomas With BCOR-CCNB3 Gene Fusion: A Report of 2 Cases Showing Histologic Overlap With Clear Cell Sarcoma of Kidney, Suggesting Further Link Between BCOR-related Sarcomas of the Kidney and Soft Tissues. Am J Surg Pathol 41:1702-1712
Moore, Kathleen N; Martin, Lainie P; O'Malley, David M et al. (2017) Safety and Activity of Mirvetuximab Soravtansine (IMGN853), a Folate Receptor Alpha-Targeting Antibody-Drug Conjugate, in Platinum-Resistant Ovarian, Fallopian Tube, or Primary Peritoneal Cancer: A Phase I Expansion Study. J Clin Oncol 35:1112-1118
Lee, Ser Yee; Goh, Brian K P; Sadot, Eran et al. (2017) Surgical Strategy and Outcomes in Duodenal Gastrointestinal Stromal Tumor. Ann Surg Oncol 24:202-210
Hyman, David M; Taylor, Barry S; Baselga, José (2017) Implementing Genome-Driven Oncology. Cell 168:584-599
Li, Gang G; Somwar, Romel; Joseph, James et al. (2017) Antitumor Activity of RXDX-105 in Multiple Cancer Types with RET Rearrangements or Mutations. Clin Cancer Res 23:2981-2990
Bhagat, Tushar D; Zou, Yiyu; Huang, Shizheng et al. (2017) Notch Pathway Is Activated via Genetic and Epigenetic Alterations and Is a Therapeutic Target in Clear Cell Renal Cancer. J Biol Chem 292:837-846
Prieto-Granada, Carlos N; Zhang, Lei; Antonescu, Cristina R et al. (2017) Primary cutaneous adenoid cystic carcinoma with MYB aberrations: report of three cases and comprehensive review of the literature. J Cutan Pathol 44:201-209
He, Mu; Agbu, Stephanie; Anderson, Kathryn V (2017) Microtubule Motors Drive Hedgehog Signaling in Primary Cilia. Trends Cell Biol 27:110-125

Showing the most recent 10 out of 7561 publications