The Gene Transfer and Somatic Cell Engineering Core (GTS) supports the preclinical translation and clinical implementation of gene transfer studies at MSKCC. The supported projects are highly dependent on achieving efficient gene transfer in primary cells, including hematopoietic progenitor cells, T lymphocytes and dendritic cells. In the upcoming grant cycle, the GTS will mainly focus on the development and optimization of clinical cell engineering processes and on the implementation of clinical trials.
The specific aims of the GTS are to carry out and/or coordinate: 1. Expansion and transduction of patient cells in semi-closed systems in collaboration with the investigators for clinical trials utilizing genetically modified cells;2. Generation and characterization of high-titer producer cell clones, master cell banks (MCB) for clinical studies;3. Production and titration of 5 to 15 liter batches of clinical viral stocks in semi-closed systems;4. Production and biosafety testing of clinical grade plasmid DMA vaccine for immunization;5. Detection of replication-competent retrovirus and other biosafety testing in cultured packaging cell clones (MCB), viral stocks and clinical specimen 6. Detection of oncoretroviral vector integration sites by LM-PCR in patient cells;7. Cell banking, storage of viral stocks, plasmid DMA vaccine and clinical specimens. In addition, the GTS provides essential advisory and training functions for the generation of research grade reagents at the Center. Investigators are thus advised or trained on 1. How to optimize the transduction of various cell types;2. How to construct recombinant gamma-retroviral and lentiviral vectors, plasmid DMA vectors, and shRNA encoding retroviral vectors;3. What packaging cell lines to use;4. How to transfect vector DMA in packaging cells and select producer cell lines;5. What tests to perform to analyze gene expression;6. How to titrate cell-free retroviral stocks by flow cytometry, Southern blot or real time PCR analysis. The GTS is thus a repository for numerous reagents and protocols that are made available to investigators at MSKCC. The centralization of cell transduction, vector production and plasmid DMA manufacturing in the GTS decreases the cost of clinical development, ensures high quality and consistency of molecular and cellular processes, and their availability to all investigators at the Center.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sloan-Kettering Institute for Cancer Research
New York
United States
Zip Code
Orlow, I; Satagopan, J M; Berwick, M et al. (2015) Genetic factors associated with naevus count and dermoscopic patterns: preliminary results from the Study of Nevi in Children (SONIC). Br J Dermatol 172:1081-9
Carey, Bryce W; Finley, Lydia W S; Cross, Justin R et al. (2015) Intracellular ?-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518:413-6
Mosher, C E; Given, B A; Ostroff, J S (2015) Barriers to mental health service use among distressed family caregivers of lung cancer patients. Eur J Cancer Care (Engl) 24:50-9
Navi, Babak B; Reiner, Anne S; Kamel, Hooman et al. (2015) Association between incident cancer and subsequent stroke. Ann Neurol 77:291-300
Xu, Zhe; Wu, Chaochao; Xie, Fang et al. (2015) Comprehensive quantitative analysis of ovarian and breast cancer tumor peptidomes. J Proteome Res 14:422-33
Xu, Hong; Cheng, Ming; Guo, Hongfen et al. (2015) Retargeting T cells to GD2 pentasaccharide on human tumors using Bispecific humanized antibody. Cancer Immunol Res 3:266-77
Gondo, Tatsuo; Poon, Bing Ying; Matsumoto, Kazuhiro et al. (2015) Clinical role of pathological downgrading after radical prostatectomy in patients with biopsy confirmed Gleason score 3 + 4 prostate cancer. BJU Int 115:81-6
Kaittanis, Charalambos; Shaffer, Travis M; Thorek, Daniel L J et al. (2014) Dawn of advanced molecular medicine: nanotechnological advancements in cancer imaging and therapy. Crit Rev Oncog 19:143-76
Das, Sudeep; Thorek, Daniel L J; Grimm, Jan (2014) Cerenkov imaging. Adv Cancer Res 124:213-34
Fay, Allison; Glickman, Michael S (2014) An essential nonredundant role for mycobacterial DnaK in native protein folding. PLoS Genet 10:e1004516

Showing the most recent 10 out of 836 publications