The primary goal of the X-ray Crystallography Core is to enable and facilitate the research of MSKCC laboratories that use X-ray crystallography as a tool to address questions in their research programs. The facility maintains in-house equipment for data collection, processing and structure determination, implements a wide range of crystallographic and structure analysis software packages, provides long-term regular access to state-of-the-art synchrotron beamlines through participation in multi-institutional consortia at two national laboratory locations, provides training and technical assistance to users of both the in-house and remote facilities, and provides expertise in structural biology and modeling and guidance to non-structural MSKCC laboratories that benefit from the use of available structures in the design and interpretation of experiments. Structural biology has been playing an increasing role in understanding the many biological processes important in cancer and in accelerating the pace of anti-cancer drug discovery. In the post-genomic era, the need for structural data to understand biological function and regulation, to provide scaffolds for the design or improvement of candidate anticancer compounds, and to help identify molecular function will increase with the application of massively parallel data acquisition tools such as DMA arrays, global protein-protein interaction maps and large scale identification of cancer-related genes. This will require increased throughput from conventional X-ray crystallography facilities, and new, state-of-the-art synchrotron facilities to accelerate structure determination and to allow the study of increasingly large and complex structures and macromolecular assemblies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA008748-47S4
Application #
8602878
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-01-20
Project End
2014-12-31
Budget Start
2012-01-09
Budget End
2012-12-31
Support Year
47
Fiscal Year
2013
Total Cost
$272,345
Indirect Cost
$128,703
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Basaraba, Cale N; Westhoff, Carolyn L; Pike, Malcolm C et al. (2017) Estimating systemic exposure to levonorgestrel from an oral contraceptive. Contraception 95:398-404
Hernandez, Jonathan M; Beylergil, Volkan; Goldman, Debra A et al. (2017) Post-Treatment/Pre-operative PET Response Is Not an Independent Predictor of Outcomes for Patients With Gastric and GEJ Adenocarcinoma. Ann Surg :
Argani, Pedram; Kao, Yu-Chien; Zhang, Lei et al. (2017) Primary Renal Sarcomas With BCOR-CCNB3 Gene Fusion: A Report of 2 Cases Showing Histologic Overlap With Clear Cell Sarcoma of Kidney, Suggesting Further Link Between BCOR-related Sarcomas of the Kidney and Soft Tissues. Am J Surg Pathol 41:1702-1712
Moore, Kathleen N; Martin, Lainie P; O'Malley, David M et al. (2017) Safety and Activity of Mirvetuximab Soravtansine (IMGN853), a Folate Receptor Alpha-Targeting Antibody-Drug Conjugate, in Platinum-Resistant Ovarian, Fallopian Tube, or Primary Peritoneal Cancer: A Phase I Expansion Study. J Clin Oncol 35:1112-1118
Lee, Ser Yee; Goh, Brian K P; Sadot, Eran et al. (2017) Surgical Strategy and Outcomes in Duodenal Gastrointestinal Stromal Tumor. Ann Surg Oncol 24:202-210
Hyman, David M; Taylor, Barry S; Baselga, José (2017) Implementing Genome-Driven Oncology. Cell 168:584-599
Li, Gang G; Somwar, Romel; Joseph, James et al. (2017) Antitumor Activity of RXDX-105 in Multiple Cancer Types with RET Rearrangements or Mutations. Clin Cancer Res 23:2981-2990
Bhagat, Tushar D; Zou, Yiyu; Huang, Shizheng et al. (2017) Notch Pathway Is Activated via Genetic and Epigenetic Alterations and Is a Therapeutic Target in Clear Cell Renal Cancer. J Biol Chem 292:837-846
Prieto-Granada, Carlos N; Zhang, Lei; Antonescu, Cristina R et al. (2017) Primary cutaneous adenoid cystic carcinoma with MYB aberrations: report of three cases and comprehensive review of the literature. J Cutan Pathol 44:201-209
He, Mu; Agbu, Stephanie; Anderson, Kathryn V (2017) Microtubule Motors Drive Hedgehog Signaling in Primary Cilia. Trends Cell Biol 27:110-125

Showing the most recent 10 out of 7561 publications