Molecular Cytogenetics enables the analysis of chromosomal changes over a broad range of focus, from whole genome composition or organization to specific gene copy number or location. It provides a comprehensive genomic context for global or targeted cell biology studies. In contrast to most other approaches, it enables a cell-by-cell survey of chromosomal content, revealing heterogeneity and possible associations within that heterogeneity. Thus cytogenetic analysis remains a simple and efficient first step towards identifying novel areas of genomic change. The Molecular Cytogenetics Core provides MSKCC investigators with effective chromosome-based analyses for human or research animal cells. It processes samples from primary cells, cell lines, or archival tissue, performs chromosome analysis on research samples, using conventional Cytogenetics (chromosome banding and karyotyping) and molecular Cytogenetics procedures based on fluorescence in situ hybridization (FISH), including Spectral Karyotyping (SKY). The Core staff works with investigators to design the most appropriate and efficient analysis for their needs and produces customized probes for specific projects. The Core has assembled a broad range of molecular Cytogenetics resources for human and mouse analysis, including plasmid and BAG clone stocks, as well as chromosome paints. Chromosome analysis is an integral part of research focusing on genomic instability. The Core's experience in karyotyping and chromosome identification provides valuable support to investigators attempting to understand the basis of chromosomal instability in cancer. In addition to specific research applications, the Core also provides an essential function in maintaining Good Laboratory Practice for MSKCC research projects that use cultured cell lines. Karyotype analysis provides basic confirmation and documentation of cell line identity, and is used to monitor chromosomal integrity.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA008748-47S4
Application #
8602882
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-01-20
Project End
2014-12-31
Budget Start
2012-01-09
Budget End
2012-12-31
Support Year
47
Fiscal Year
2013
Total Cost
$209,792
Indirect Cost
$99,142
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Orlow, I; Satagopan, J M; Berwick, M et al. (2015) Genetic factors associated with naevus count and dermoscopic patterns: preliminary results from the Study of Nevi in Children (SONIC). Br J Dermatol 172:1081-9
Carey, Bryce W; Finley, Lydia W S; Cross, Justin R et al. (2015) Intracellular ?-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518:413-6
Mosher, C E; Given, B A; Ostroff, J S (2015) Barriers to mental health service use among distressed family caregivers of lung cancer patients. Eur J Cancer Care (Engl) 24:50-9
Navi, Babak B; Reiner, Anne S; Kamel, Hooman et al. (2015) Association between incident cancer and subsequent stroke. Ann Neurol 77:291-300
Xu, Zhe; Wu, Chaochao; Xie, Fang et al. (2015) Comprehensive quantitative analysis of ovarian and breast cancer tumor peptidomes. J Proteome Res 14:422-33
Xu, Hong; Cheng, Ming; Guo, Hongfen et al. (2015) Retargeting T cells to GD2 pentasaccharide on human tumors using Bispecific humanized antibody. Cancer Immunol Res 3:266-77
Gondo, Tatsuo; Poon, Bing Ying; Matsumoto, Kazuhiro et al. (2015) Clinical role of pathological downgrading after radical prostatectomy in patients with biopsy confirmed Gleason score 3 + 4 prostate cancer. BJU Int 115:81-6
Ripley, R Taylor; McMillan, Robert R; Sima, Camelia S et al. (2014) Second primary lung cancers: smokers versus nonsmokers after resection of stage I lung adenocarcinoma. Ann Thorac Surg 98:968-74
Ye, Jiangbin; Fan, Jing; Venneti, Sriram et al. (2014) Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov 4:1406-17
Lu, Zhigang; Xu, Jin; Xu, Mingming et al. (2014) Morphine regulates expression of *-opioid receptor MOR-1A, an intron-retention carboxyl terminal splice variant of the *-opioid receptor (OPRM1) gene via miR-103/miR-107. Mol Pharmacol 85:368-80

Showing the most recent 10 out of 836 publications