The High-Throughput Screening Core allows the rapid identification of biologically active chemical scaffolds from libraries containing several thousand discrete chemicals, and potentially containing naturally occurring ones obtained from natural sources such as plants. MSKCC has implemented the creation of a state of the art high throughput screening core facility with modern robotics, custom built screening data management databases for storing and querying data, and setting up strategic collaborations for the supply chemicals and to provide expertise in medicinal chemistry optimization. The facility contains a custom built six meter linear track robotic platform equipped with plate hotels, incubators for cell based assays, bulk liquid dispensers (Multidrops), 384/1536 liquid handlers (Apricot Designs TPS), a Perkin Elmer MicroBeta counter, two Perkin Elmer Victors multi-detection plates readers, two Molecular Device absorbance scanners, and one Amersham Multi-detection imager. Screening data acquisition and management is handled through custom built software named ORIS, which is composed of a chemical registration and inventory function together with an automated data loader for acquisition, analysis and screen data publishing. The compound library will grow to up to 500,000 discrete chemicals from selected commercial vendors and will also contain a wide variety of natural products, some purified and others in extract mixtures pending screening and dereplication to identify and purify the active product(s). The impact of such an infrastructure on the ongoing cancer research will be in the following areas: 1) Chemical cancer biology to discover novel control mechanisms to help further elucidate known or discover novel cancer pathways including control junctions, 2) Novel chemical scaffolds for use as radiotracers for biochemical and metabolic studies in vivo and for use in cancer diagnostics, and 3) the classical drug discovery process in which in vitro and/or cell based targets are screened and the resulting chemical hits are subjected to secondary and high content screens, in order to further optimize their chemical structures and their drug properties, and to show some efficacy against the specific cancer with little or no side effects, making them good drug candidates for the clinic.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA008748-47S4
Application #
8602884
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-01-20
Project End
2014-12-31
Budget Start
2012-01-09
Budget End
2012-12-31
Support Year
47
Fiscal Year
2013
Total Cost
$534,946
Indirect Cost
$252,801
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Steuer, Conor E; Behera, Madhusmita; Berry, Lynne et al. (2016) Role of race in oncogenic driver prevalence and outcomes in lung adenocarcinoma: Results from the Lung Cancer Mutation Consortium. Cancer 122:766-72
Dominguez-Rosado, Ismael; Moutinho Jr, Vitor; DeMatteo, Ronald P et al. (2016) Outcomes of the Memorial Sloan Kettering Cancer Center International General Surgical Oncology Fellowship. J Am Coll Surg 222:961-6
Iasonos, Alexia; O'Quigley, John (2016) Integrating the escalation and dose expansion studies into a unified Phase I clinical trial. Contemp Clin Trials 50:124-34
Ulaner, Gary A; Hyman, David M; Ross, Dara S et al. (2016) Detection of HER2-Positive Metastases in Patients with HER2-Negative Primary Breast Cancer Using 89Zr-Trastuzumab PET/CT. J Nucl Med 57:1523-1528
Brown, Anna M; Nagala, Sidhartha; McLean, Mary A et al. (2016) Multi-institutional validation of a novel textural analysis tool for preoperative stratification of suspected thyroid tumors on diffusion-weighted MRI. Magn Reson Med 75:1708-16
Akkari, Leila; Gocheva, Vasilena; Quick, Marsha L et al. (2016) Combined deletion of cathepsin protease family members reveals compensatory mechanisms in cancer. Genes Dev 30:220-32
Theilen, Till M; Chou, Alexander J; Klimstra, David S et al. (2016) Esophageal Adenocarcinoma and Squamous Cell Carcinoma in Children and Adolescents: Report of 3 Cases and Comprehensive Literature Review. J Pediatr Surg Case Rep 5:23-29
Robinson, June K; Halpern, Allan C (2016) Cost-effective Melanoma Screening. JAMA Dermatol 152:19-21
Calzavara-Pinton, Pier Giacomo; Rossi, Maria Teresa; Zanca, Arianna et al. (2016) Oral Polypodium leucomotos increases the anti-inflammatory and melanogenic responses of the skin to different modalities of sun exposures: a pilot study. Photodermatol Photoimmunol Photomed 32:22-7
Ripley, R Taylor; Suzuki, Kei; Tan, Kay See et al. (2016) Postinduction positron emission tomography assessment of N2 nodes is not associated with ypN2 disease or overall survival in stage IIIA non-small cell lung cancer. J Thorac Cardiovasc Surg 151:969-77, 979.e1-3

Showing the most recent 10 out of 4768 publications