The Molecular Cytology Core Facility (MCCF) underpins all the basic and clinical research at MSKCC involving the interrogation of proteins or nucleic acids in cells, tissues and tumors. The MCCF retains state-of- the-art equipment and an array of imaging tools and a team of highly talented technical assistants and as such provides both a service and one-on-one training enabling faculty and their trainees to work independently with high-end instrumentation. A resource of validated antibodies for automated or manual histology is a feature of the Core's rapid and reliable service used by investigators working with animal tumor models or patient samples. To explore the cell biology of cancer cells at high spatial and temporal resolution, the Core's in-house expertise enables the power of a superb suite of confocal microscopes to be accessible not only to cell biologists but also to the wider community of members of the Cancer Center. Imaging modalities for molecular detection available to the researchers at the MCCF are optical microscopes, including wide field (epifluorescence, bright field, polarizing and DIC), confocal (raster scanning, line scanning and spinning disc), time lapse microscopy, FLIM and digital scanners. Experiments involving uncaging experiments, FRAP and FRET, and Ratio imaging of calcium ions are also carried out at the MCCF. In addition to assistance and training on image acquisition, the MCCF staff provide assistance to researchers in image processing and analysis using Velocity, MetaMorph, Imaris and MatLab software. The broad range of services and collaborative work provided by the Molecular Cytology Core has supported the research of 120 investigators in the past year. During the past grant period the work of the Core has contributed to 315 publications of researchers from 5 research programs. For example, with the assistance of the Core, Studer and Tabar demonstrated that neural rosette cells represent the first characterized neural stem cell stage capable of responding to patterning cues that direct differentiation toward region-specific neuronal fates. The Core provided immunohistochemistry and image analysis critical to this work.

Public Health Relevance

The Molecular Cytology Core provides cutting edge in situ detection and optical imaging platforms. As our collective understanding of cancer genetics increases there will be an increasing need to understand the function and behavior of key drivers;moreover, it is becoming increasingly apparent that cancers are heterogeneous and studying molecular function at the level of individual cells in tissues will be important for understanding the biological and clinical impact of such heterogeneity.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Program Officer
Shafik, Hasnaa
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sloan-Kettering Institute for Cancer Research
New York
United States
Zip Code
Orlow, I; Satagopan, J M; Berwick, M et al. (2015) Genetic factors associated with naevus count and dermoscopic patterns: preliminary results from the Study of Nevi in Children (SONIC). Br J Dermatol 172:1081-9
Carey, Bryce W; Finley, Lydia W S; Cross, Justin R et al. (2015) Intracellular ?-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518:413-6
Mosher, C E; Given, B A; Ostroff, J S (2015) Barriers to mental health service use among distressed family caregivers of lung cancer patients. Eur J Cancer Care (Engl) 24:50-9
Navi, Babak B; Reiner, Anne S; Kamel, Hooman et al. (2015) Association between incident cancer and subsequent stroke. Ann Neurol 77:291-300
Xu, Zhe; Wu, Chaochao; Xie, Fang et al. (2015) Comprehensive quantitative analysis of ovarian and breast cancer tumor peptidomes. J Proteome Res 14:422-33
Xu, Hong; Cheng, Ming; Guo, Hongfen et al. (2015) Retargeting T cells to GD2 pentasaccharide on human tumors using Bispecific humanized antibody. Cancer Immunol Res 3:266-77
Gondo, Tatsuo; Poon, Bing Ying; Matsumoto, Kazuhiro et al. (2015) Clinical role of pathological downgrading after radical prostatectomy in patients with biopsy confirmed Gleason score 3 + 4 prostate cancer. BJU Int 115:81-6
Ripley, R Taylor; McMillan, Robert R; Sima, Camelia S et al. (2014) Second primary lung cancers: smokers versus nonsmokers after resection of stage I lung adenocarcinoma. Ann Thorac Surg 98:968-74
Ye, Jiangbin; Fan, Jing; Venneti, Sriram et al. (2014) Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov 4:1406-17
Lu, Zhigang; Xu, Jin; Xu, Mingming et al. (2014) Morphine regulates expression of *-opioid receptor MOR-1A, an intron-retention carboxyl terminal splice variant of the *-opioid receptor (OPRM1) gene via miR-103/miR-107. Mol Pharmacol 85:368-80

Showing the most recent 10 out of 836 publications