The Protein Expression and Libraries Facility (Protein Expression) provides Cancer Center members efficient and expert technical assistance in recombinant DMA plasmid engineering, protein expression in bacteria and baculovirus-infected insect cells, purification of recombinant proteins to homogeneity, and production of high-titer stocks of retroviruses (e.g. lentiviruses) for delivery of shRNA and cDNAs to mammalian cells. The Facility has expertise in all aspects of vector technology for protein expression, baculovirus generation, recombinant protein expression, and affinity and conventional chromatography approaches to protein purification, and production of infectious lenti-/retroviruses. The proteins produced by the facility must be of high quality and purity in order to be used by Cancer Center scientists to achieve a wide range of experimental objectives, such as characterization of enzymatic activities, crystallization for structural analysis, characterization of structure-function relationships of protein:protein, protein:nucleic acid, and protein:small molecule interactions;development of assays for small molecule high throughput screening;and immunization of mice to generate custom antibodies utilizing the Hybridoma Facility. The facility will continue to expand it's repertoire of vectors available for protein expression, included high titer retroviral vectors, acquire RNAi libraries, and implement a new assay development service for highthroughput screening of small molecule libraries. The facility personnel are highly trained technical experts in all areas of the proposed support services to be provided to the individual projects. The centralization and standardization of these practices under the direction of very experienced staff allows for high-throughput expression plasmid construction and large-volume protein expression services, including quality assurance and control procedures to ensure efficient, consistent production and purification of high quality recombinant proteins. The Facility also maximizes biosafety by confining retrovirus (e.g. lentivirus) production to a centralized biosafety level 2 (BSL2) unit, which prevents aerosolization of viruses from contaminating incubators and parental cultures of cell lines, and improves quality control in the production of virus stocks to be used in gain- and loss-of-function experiments in vitro and in vivo. Currently the Facility is being expanded to accommodate the storage and handling of viral libraries, additional purification instruments, and the rapid assay systems to meet Cancer Center needs.

Public Health Relevance

Recombinant DMA technology has provided the unique opportunity to produce otherwise rare proteins derived from recombinant genes. The availability of these proteins has enabled many types of experiments that would have otherwise been impossible. Also, the facility will provide and manage libraries of shRNA genes in lenteviral vectors that can be used to manipulate the expression of genes for cancer research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA010815-43
Application #
8378498
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
43
Fiscal Year
2012
Total Cost
$161,522
Indirect Cost
$69,399
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Abdel-Mohsen, Mohamed; Kuri-Cervantes, Leticia; Grau-Exposito, Judith et al. (2018) CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells. Sci Transl Med 10:
Fukumoto, Takeshi; Magno, Elizabeth; Zhang, Rugang (2018) SWI/SNF Complexes in Ovarian Cancer: Mechanistic Insights and Therapeutic Implications. Mol Cancer Res 16:1819-1825
Cañadas, Israel; Thummalapalli, Rohit; Kim, Jong Wook et al. (2018) Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat Med 24:1143-1150
Basu, Subhasree; Gnanapradeepan, Keerthana; Barnoud, Thibaut et al. (2018) Mutant p53 controls tumor metabolism and metastasis by regulating PGC-1?. Genes Dev 32:230-243
Perales-Puchalt, Alfredo; Perez-Sanz, Jairo; Payne, Kyle K et al. (2018) Frontline Science: Microbiota reconstitution restores intestinal integrity after cisplatin therapy. J Leukoc Biol 103:799-805
Colón, Krystal; Speicher, David W; Smith, Peter et al. (2018) S100a14 is Increased in Activated Nk Cells and Plasma of HIV-Exposed Seronegative People Who Inject Drugs and Promotes Monocyte-Nk crosstalk. J Acquir Immune Defic Syndr :
Schug, Zachary T (2018) Formaldehyde Detoxification Creates a New Wheel for the Folate-Driven One-Carbon ""Bi""-cycle. Biochemistry 57:889-890
Karakashev, Sergey; Zhu, Hengrui; Wu, Shuai et al. (2018) CARM1-expressing ovarian cancer depends on the histone methyltransferase EZH2 activity. Nat Commun 9:631
Jenkins, Russell W; Aref, Amir R; Lizotte, Patrick H et al. (2018) Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discov 8:196-215
Barnoud, Thibaut; Budina-Kolomets, Anna; Basu, Subhasree et al. (2018) Tailoring Chemotherapy for the African-Centric S47 Variant of TP53. Cancer Res 78:5694-5705

Showing the most recent 10 out of 741 publications