The goal of the Hybridoma Facility is to produce monoclonal antibodies (MAbs) for use in characterizing, detecting, and purifying tumor antigens and other cancer-related proteins. The Facility generates MAbs primarily by fusing the spleens of antigen-immunized mice with a myeloma-derived fusion partner to immortalize antigen-specific antibodysecreting cells (hybridomas). The advantage of this approach is that it exploits the ability of the immune system of an intact animal to generate antibodies that react with antigens with high affinity, which can be used in a variety of applications that require the antibody to interact with target antigens with high specificity and sensitivity. Investigators often provide the facility with highly immunogenic glutathione-S-transferase (GST) fusion proteins, which in almost all cases generate a useful IgG-secreting MAb that recognizes the target antigen. In the most recent funding period, the Facility produced three classes of MAbs: 1)MAbs that recognize transcription factors and transcription factor domains for use in studies of cellular processes of oncogenesis;2) MAbs against molecules involved in RNA editing by microRNAs, which have emerged as crucial regulators of gene expression;and 3) antiidiotypic MAbs for use in cancer therapy. The facility has thus provided unique reagents to multiple Cancer Center members that have advanced their abilities to perform cutting edge research into underlying mechanisms of, and therapeutic approaches to cancer. In the most recent funding period the facility introduced hollow fiber bioreactors to enhance its capacity to produce large quantities of MAbs, and is beginning to perform custom-labeling of antibodies with fluorochromes and other tags to meet the increasing needs of investigators for labeled reagents for use in flow cytometry and other analysis systems. Another area being developed is the generation of human MAbs, using new methods combining flow cytometry, B cell activation via toll-like receptor ligands and immortalization with Epstein Barr virus. This technology provides the potential to develop reagents that can be used to treat human cancers and bypass problems with anti-mouse immune responses that develop in patients treated with mouse MAbs. This technology also offers the opportunity to analyze human B cell responses that may develop in disease states such as cancer.

Public Health Relevance

The Hybridoma Facility provides Cancer Center members with the ability to create and produce custom monoclonal antibodies to meet their needs to stain tissues, label cells, immunoprecipitate molecules or complexes, sort cells, and perform procedures that call for immunospecific reagents in cancer research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA010815-44
Application #
8461264
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
44
Fiscal Year
2013
Total Cost
$35,436
Indirect Cost
$14,831
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Fukumoto, Takeshi; Park, Pyoung Hwa; Wu, Shuai et al. (2018) Repurposing Pan-HDAC Inhibitors for ARID1A-Mutated Ovarian Cancer. Cell Rep 22:3393-3400
Bhattacharjee, Souvik; Coppens, Isabelle; Mbengue, Alassane et al. (2018) Remodeling of the malaria parasite and host human red cell by vesicle amplification that induces artemisinin resistance. Blood 131:1234-1247
Lu, Yunqi; Hu, Zhongyi; Mangala, Lingegowda S et al. (2018) MYC Targeted Long Noncoding RNA DANCR Promotes Cancer in Part by Reducing p21 Levels. Cancer Res 78:64-74
Thangavel, Chellappagounder; Boopathi, Ettickan; Liu, Yi et al. (2018) Therapeutic Challenge with a CDK 4/6 Inhibitor Induces an RB-Dependent SMAC-Mediated Apoptotic Response in Non-Small Cell Lung Cancer. Clin Cancer Res 24:1402-1414
Duperret, Elizabeth K; Liu, Shujing; Paik, Megan et al. (2018) A Designer Cross-reactive DNA Immunotherapeutic Vaccine that Targets Multiple MAGE-A Family Members Simultaneously for Cancer Therapy. Clin Cancer Res 24:6015-6027
Duperret, Elizabeth K; Wise, Megan C; Trautz, Aspen et al. (2018) Synergy of Immune Checkpoint Blockade with a Novel Synthetic Consensus DNA Vaccine Targeting TERT. Mol Ther 26:435-445
Peng, Hongzhuang; Prokop, Jeremy; Karar, Jayashree et al. (2018) Familial and Somatic BAP1 Mutations Inactivate ASXL1/2-Mediated Allosteric Regulation of BAP1 Deubiquitinase by Targeting Multiple Independent Domains. Cancer Res 78:1200-1213
Trizzino, Marco; Barbieri, Elisa; Petracovici, Ana et al. (2018) The Tumor Suppressor ARID1A Controls Global Transcription via Pausing of RNA Polymerase II. Cell Rep 23:3933-3945
Shastrula, Prashanth Krishna; Lund, Peder J; Garcia, Benjamin A et al. (2018) Rpp29 regulates histone H3.3 chromatin assembly through transcriptional mechanisms. J Biol Chem 293:12360-12377
Kaur, Amanpreet; Ecker, Brett L; Douglass, Stephen M et al. (2018) Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. Cancer Discov :

Showing the most recent 10 out of 741 publications