The Molecular Screening Shared Resource provides Cancer Center members with state-of-the-art high-throughput screening capabilities of shRNA and small molecule libraries to identify genes and tool inhibitors of candidate therapeutic targets. Identifying drug-like, small molecules that regulate the activity of therapeutic targets holds promise in defining new treatment paradigms, especially for recalcitrant tumor types, where current clinical practice is suboptimal. In the 2008 submission of the Wistar Cancer Center Support Grant, the services of this Resource were incorporated into the Protein Expression and Libraries Shared Resource. Backed by an investment of over $1 million, the Resource has grown steadily in instrumentation capabilities, range of services and scientific impact for a broad spectrum of research projects. Currently, the Resource offers: 1) biochemical-, cell-, and high-content based assays amenable to high-throughput screening in 384 well microtiter plates;2) managing of libraries of small molecules;3) high-throughput screening of small molecule libraries;4) analysis of biological and chemistry datasets;4) characterization of potency and selectivity of newly identified compounds in secondary, orthogonal assays. These services are provided through a centralized laboratory equipped with robotics, libraries of drug-like molecules arrayed in high-density microplate formats, and computational infrastructure for efficient analysis, interpretation, and management of biological and chemistry datasets. The Resource is operated by an experienced Managing Director and dedicated laboratory staff, cross-trained in all services offered. This allows for timely project management, quality assurance, and dissemination/integration of data critical for translation of basic biological observations into potential therapeutic strategies. As a result of this technical expansion, growth of user base, and integration of services, the Resource is now presented as a stand-alone Cancer Center Shared Resource, and operationally classified as a Type II Resource to reflect the highly specialized, frequently collaborative nature of most services. Through its activity over the last project period, the Molecular Screening Resource has enabled dissection of complex signaling pathways of tumor onset and progression, validation of anticancer agent(s), and proof of concept results that were ultimately incorporated into early phase clinical trials. As an engine for multidisciplinary research collaboration, the Resource has contributed to critical publications and grant funding across all three Cancer Center Programs.

Public Health Relevance

Although progress has been made in personalized cancer medicine, many targeted agents provide short-lived clinical responses. This presses the need to identify new targets, dissect their pathways and isolate drug-like molecules with therapeutic potential. These are the goals of the Molecular Screening Resource, with the goal of generating testable hypotheses along the continuum of basic and translational cancer research.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Program Officer
Ptak, Krzysztof
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wistar Institute
United States
Zip Code
Seo, Jae Ho; Rivadeneira, Dayana B; Caino, M Cecilia et al. (2016) The Mitochondrial Unfoldase-Peptidase Complex ClpXP Controls Bioenergetics Stress and Metastasis. PLoS Biol 14:e1002507
Haut, Larissa H; Gill, Amanda L; Kurupati, Raj K et al. (2016) A Partial E3 Deletion in Replication-Defective Adenoviral Vectors Allows for Stable Expression of Potentially Toxic Transgene Products. Hum Gene Ther Methods :
Peck, Barrie; Schug, Zachary T; Zhang, Qifeng et al. (2016) Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments. Cancer Metab 4:6
Tempera, Italo; De Leo, Alessandra; Kossenkov, Andrew V et al. (2016) Identification of MEF2B, EBF1, and IL6R as Direct Gene Targets of Epstein-Barr Virus (EBV) Nuclear Antigen 1 Critical for EBV-Infected B-Lymphocyte Survival. J Virol 90:345-55
Nelson, David M; Jaber-Hijazi, Farah; Cole, John J et al. (2016) Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability. Genome Biol 17:158
Kumar, Vinit; Patel, Sima; Tcyganov, Evgenii et al. (2016) The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol 37:208-20
Kung, Che-Pei; Murphy, Maureen E (2016) The role of the p53 tumor suppressor in metabolism and diabetes. J Endocrinol 231:R61-R75
Patro, Sean C; Azzoni, Livio; Joseph, Jocelin et al. (2016) Antiretroviral therapy in HIV-1-infected individuals with CD4 count below 100 cells/mm3 results in differential recovery of monocyte activation. J Leukoc Biol 100:223-31
Chae, Young Chan; Vaira, Valentina; Caino, M Cecilia et al. (2016) Mitochondrial Akt Regulation of Hypoxic Tumor Reprogramming. Cancer Cell 30:257-72
Vazquez, Alexei; Kamphorst, Jurre J; Markert, Elke K et al. (2016) Cancer metabolism at a glance. J Cell Sci 129:3367-73

Showing the most recent 10 out of 582 publications