The Molecular Screening Shared Resource provides Cancer Center members with state-of-the-art high-throughput screening capabilities of shRNA and small molecule libraries to identify genes and tool inhibitors of candidate therapeutic targets. Identifying drug-like, small molecules that regulate the activity of therapeutic targets holds promise in defining new treatment paradigms, especially for recalcitrant tumor types, where current clinical practice is suboptimal. In the 2008 submission of the Wistar Cancer Center Support Grant, the services of this Resource were incorporated into the Protein Expression and Libraries Shared Resource. Backed by an investment of over $1 million, the Resource has grown steadily in instrumentation capabilities, range of services and scientific impact for a broad spectrum of research projects. Currently, the Resource offers: 1) biochemical-, cell-, and high-content based assays amenable to high-throughput screening in 384 well microtiter plates;2) managing of libraries of small molecules;3) high-throughput screening of small molecule libraries;4) analysis of biological and chemistry datasets;4) characterization of potency and selectivity of newly identified compounds in secondary, orthogonal assays. These services are provided through a centralized laboratory equipped with robotics, libraries of drug-like molecules arrayed in high-density microplate formats, and computational infrastructure for efficient analysis, interpretation, and management of biological and chemistry datasets. The Resource is operated by an experienced Managing Director and dedicated laboratory staff, cross-trained in all services offered. This allows for timely project management, quality assurance, and dissemination/integration of data critical for translation of basic biological observations into potential therapeutic strategies. As a result of this technical expansion, growth of user base, and integration of services, the Resource is now presented as a stand-alone Cancer Center Shared Resource, and operationally classified as a Type II Resource to reflect the highly specialized, frequently collaborative nature of most services. Through its activity over the last project period, the Molecular Screening Resource has enabled dissection of complex signaling pathways of tumor onset and progression, validation of anticancer agent(s), and proof of concept results that were ultimately incorporated into early phase clinical trials. As an engine for multidisciplinary research collaboration, the Resource has contributed to critical publications and grant funding across all three Cancer Center Programs.

Public Health Relevance

Although progress has been made in personalized cancer medicine, many targeted agents provide short-lived clinical responses. This presses the need to identify new targets, dissect their pathways and isolate drug-like molecules with therapeutic potential. These are the goals of the Molecular Screening Resource, with the goal of generating testable hypotheses along the continuum of basic and translational cancer research.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Program Officer
Ptak, Krzysztof
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wistar Institute
United States
Zip Code
Qin, Jie; Rajaratnam, Rajathees; Feng, Li et al. (2015) Development of organometallic S6K1 inhibitors. J Med Chem 58:305-14
Tomescu, Costin; Seaton, Kelly E; Smith, Peter et al. (2015) Innate activation of MDC and NK cells in high-risk HIV-1-exposed seronegative IV-drug users who share needles when compared with low-risk nonsharing IV-drug user controls. J Acquir Immune Defic Syndr 68:264-73
Gekonge, Bethsebah; Bardin, Matthew C; Montaner, Luis J (2015) Short communication: Nitazoxanide inhibits HIV viral replication in monocyte-derived macrophages. AIDS Res Hum Retroviruses 31:237-41
Webster, Marie R; Xu, Mai; Kinzler, Kathryn A et al. (2015) Wnt5A promotes an adaptive, senescent-like stress response, while continuing to drive invasion in melanoma cells. Pigment Cell Melanoma Res 28:184-95
Zhang, Xuhui; Akech, Jacqueline; Browne, Gillian et al. (2015) Runx2-Smad signaling impacts the progression of tumor-induced bone disease. Int J Cancer 136:1321-32
Kung, Che-Pei; Khaku, Sakina; Jennis, Matthew et al. (2015) Identification of TRIML2, a novel p53 target, that enhances p53 SUMOylation and regulates the transactivation of proapoptotic genes. Mol Cancer Res 13:250-62
Wolf, Amaya I; Strauman, Maura C; Mozdzanowska, Krystyna et al. (2014) Pneumolysin expression by streptococcus pneumoniae protects colonized mice from influenza virus-induced disease. Virology 462-463:254-65
Gumireddy, Kiranmai; Li, Anping; Kossenkov, Andrew V et al. (2014) ID1 promotes breast cancer metastasis by S100A9 regulation. Mol Cancer Res 12:1334-43
Budina-Kolomets, Anna; Balaburski, Gregor M; Bondar, Anastasia et al. (2014) Comparison of the activity of three different HSP70 inhibitors on apoptosis, cell cycle arrest, autophagy inhibition, and HSP90 inhibition. Cancer Biol Ther 15:194-9
Newhart, Alyshia; Janicki, Susan M (2014) Seeing is believing: visualizing transcriptional dynamics in single cells. J Cell Physiol 229:259-65

Showing the most recent 10 out of 182 publications