The Wistar Institute Cancer Center presents four Type II Shared Resources in this application: Bioinformatics, Genomics, Molecular Screening, and Proteomics. During the past project period the Cancer Center made substantial investments in the Type II Shared Resources, utilizing over $5.5 million in capital funds and equipment grants for equipment upgrades and facility improvements. These Resources function as engines, integrated components ofthe research being conducted by Cancer Center members. The Type II Resources have demonstrated a significant impact to the scientific objectives of the Cancer Center, contributing to 153 of 382 (40%) of the unique cancer-related publications reported by the three scientific Programs. Following a comprehensive realignment of all of its Shared Resources by the appointment of dedicated leadership as described in the Cancer Center Administration section of this application. Shared Resources were grouped as Type I or Type II, reflecting the intensity of collaborative input of their services. Type II Shared Resources provide a higher intensity of collaboration and impact on service, requiring an initial consultation to define the scope of service and remain consultative throughout the service delivery. For many projects. Type II Shared Resources participate in experiment design for sample preparation, services often need to be adapted to address specific scientific problems, and frequently the resulting complex datasets need to be reviewed with the user followed by further data analysis. Regular correspondence and method modifications are required throughout the delivery ofthe service in order to determine the appropriate course of action. Therefore, a distinctive feature of Type II Resources is a substantial amount of individualized, project-driven consultative time and effort provided by Resource staff to users. Accordingly, it is usually impractical for such services to achieve full recovery of operating costs through chargebacks. Clear benchmarks and objective review criteria were introduced in order to enable timely oversight, scientific impact, quality of service, and financial strength for each Shared Resource. Regular evaluations of scientific impact for the Cancer Center (i) and sustainability of services (ii) for each Resource, guide the decision-making process for the Shared Resources. Overall Type II Shared Resources represent clear engines for research as their impact on innovation and discovery is inherent to the individualized nature of their services.

Public Health Relevance

The multidisciplinary nature and extraordinary complexity of modern cancer research require technologically advanced approaches that support refinement of the experimental question, customization of the most appropriate research tool and consultative review of data analysis and interpretation. Type II Shared Resources offer these services to Cancer Center investigators as an integrated and scientifically-driven extension of their research laboratories.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA010815-47
Application #
9033840
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2016-03-01
Budget End
2017-02-28
Support Year
47
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Li, Heng; Wang, Zhize; Xiao, Wei et al. (2018) Androgen-receptor splice variant-7-positive prostate cancer: a novel molecular subtype with markedly worse androgen-deprivation therapy outcomes in newly diagnosed patients. Mod Pathol 31:198-208
Shastrula, Prashanth K; Rice, Cory T; Wang, Zhuo et al. (2018) Structural and functional analysis of an OB-fold in human Ctc1 implicated in telomere maintenance and bone marrow syndromes. Nucleic Acids Res 46:972-984
Duperret, Elizabeth K; Trautz, Aspen; Ammons, Dylan et al. (2018) Alteration of the Tumor Stroma Using a Consensus DNA Vaccine Targeting Fibroblast Activation Protein (FAP) Synergizes with Antitumor Vaccine Therapy in Mice. Clin Cancer Res 24:1190-1201
Heppt, Markus V; Wang, Joshua X; Hristova, Denitsa M et al. (2018) MSX1-Induced Neural Crest-Like Reprogramming Promotes Melanoma Progression. J Invest Dermatol 138:141-149
Wu, Shuai; Fatkhutdinov, Nail; Fukumoto, Takeshi et al. (2018) SWI/SNF catalytic subunits' switch drives resistance to EZH2 inhibitors in ARID1A-mutated cells. Nat Commun 9:4116
Ecker, Brett L; Kaur, Amanpreet; Douglass, Stephen M et al. (2018) Age-Related Changes in HAPLN1 Increase Lymphatic Permeability and Affect Routes of Melanoma Metastasis. Cancer Discov :
Abdel-Mohsen, Mohamed; Kuri-Cervantes, Leticia; Grau-Exposito, Judith et al. (2018) CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells. Sci Transl Med 10:
Fukumoto, Takeshi; Magno, Elizabeth; Zhang, Rugang (2018) SWI/SNF Complexes in Ovarian Cancer: Mechanistic Insights and Therapeutic Implications. Mol Cancer Res 16:1819-1825
Cañadas, Israel; Thummalapalli, Rohit; Kim, Jong Wook et al. (2018) Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat Med 24:1143-1150
Basu, Subhasree; Gnanapradeepan, Keerthana; Barnoud, Thibaut et al. (2018) Mutant p53 controls tumor metabolism and metastasis by regulating PGC-1?. Genes Dev 32:230-243

Showing the most recent 10 out of 741 publications