Mission: The objective of the CCCWFU Microarray Shared Resource is to provide Cancer Center members with a competitive and cutting-edge environment for cancer genomics research. The Shared Resource accomplishes this goal by providing faculty with comprehensive and cost-effective microarray technologies and bioinformatics support to facilitate RNA expression profiling, single nucleotide polymorphism (SNP) genotyping, genome copy-number analysis, and methylation profiling using Affymetrix GeneChip oligonucleotide arrays. The accomplishment of these objectives has, in part, been facilitated by recent modifications to the Shared Resource, including the recruitment of Dr. Lance D. Miller as Director, and the addition of a microarray bioinformatics expert to facilitate high quality, detailed analysis of microarray data. Assets: The Microarray Shared Resource has a modern infrastructure that includes the GeneChip Scanner 3000 7G multi-color scanner (recently upgraded to accommodate the MegAllele system for targeted genotyping);three GeneChip 450 fluidics stations;two GeneChip hybridization ovens and four high-speed computer workstations for data analysis workflows. Computational tools for data processing and low-level array analysis are provided by the Affymetrix GeneChip Command Console software (AGCC; released September 2008) which includes basic solutions for data normalization, analysis of expression, genotype and copy-number data, registration of samples and arrays, and management of multi-chip datasets. For advanced data analysis, the Shared Resource now maintains an annual license to the Partek Genomics Suite software - a comprehensive suite of advanced statistical methods and interactive data visualization tools. Usage &Future Directions: In the previous 1-year reporting period, the Microarray Shared Resource has been fully engaged, operating at near maximal capacity, performing 885 microarray hybridizations and providing technical and analytical resources to more than twice as many funded Center members as compared to previous years (1.8 to 5.5-fold more than seen in the past 3 years). Continued development of bioinformatics resources and acquisition of new array technologies are expected to further bolster cancer genomics research at the CCCWFU in the coming years.

Public Health Relevance

Cancer is a disease of the genome and microarray technologies are a valuable resource for investigating the genomic and molecular underpinnings of cancer formation, progression and response to treatment. Further development of the bioinformatics capabilities of the Shared Resource will be valuable to the clinical translation of discoveries made by Cancer Center investigators.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA012197-38S3
Application #
8724655
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
38
Fiscal Year
2013
Total Cost
$2,601
Indirect Cost
$901
Name
Wake Forest University Health Sciences
Department
Type
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Melvin, Ryan L; Xiao, Jiajie; Berenhaut, Kenneth S et al. (2018) Using correlated motions to determine sufficient sampling times for molecular dynamics. Phys Rev E 98:023307
Bhatt, Nikunj B; Pandya, Darpan N; Dezarn, William A et al. (2018) Practical Guidelines for Cerenkov Luminescence Imaging with Clinically Relevant Isotopes. Methods Mol Biol 1790:197-208
Gesell, Sabina B; Golden, Shannon L; Limkakeng Jr, Alexander T et al. (2018) Implementation of the HEART Pathway: Using the Consolidated Framework for Implementation Research. Crit Pathw Cardiol 17:191-200
Mao, Chengqiong; Qu, Ping; Miley, Michael J et al. (2018) P-glycoprotein targeted photodynamic therapy of chemoresistant tumors using recombinant Fab fragment conjugates. Biomater Sci 6:3063-3074
Bhatt, Nikunj B; Pandya, Darpan N; Rideout-Danner, Stephanie et al. (2018) A comprehensively revised strategy that improves the specific activity and long-term stability of clinically relevant 89Zr-immuno-PET agents. Dalton Trans 47:13214-13221
Andrews, Rachel N; Caudell, David L; Metheny-Barlow, Linda J et al. (2018) Fibronectin Produced by Cerebral Endothelial and Vascular Smooth Muscle Cells Contributes to Perivascular Extracellular Matrix in Late-Delayed Radiation-Induced Brain Injury. Radiat Res 190:361-373
Zhao, Yan; Li, Fang; Mao, Chengqiong et al. (2018) Multiarm Nanoconjugates for Cancer Cell-Targeted Delivery of Photosensitizers. Mol Pharm 15:2559-2569
Samykutty, Abhilash; Grizzle, William E; Fouts, Benjamin L et al. (2018) Optoacoustic imaging identifies ovarian cancer using a microenvironment targeted theranostic wormhole mesoporous silica nanoparticle. Biomaterials 182:114-126
Xiao, Jiajie; Melvin, Ryan L; Salsbury Jr, Freddie R (2018) Probing light chain mutation effects on thrombin via molecular dynamics simulations and machine learning. J Biomol Struct Dyn :1-18
Mao, Chengqiong; Zhao, Yan; Li, Fang et al. (2018) P-glycoprotein targeted and near-infrared light-guided depletion of chemoresistant tumors. J Control Release 286:289-300

Showing the most recent 10 out of 548 publications