The Tumor Microenvironment and Metastasis Program focuses on the interactions between cancer cells and their microenvironment that are determinants of the potential of tumor cells to invade surrounding tissues, penetrate blood vessels, and ultimately enter and grow in distant tissues. Studies are directed to deciphening the signaling pathways and mechanical interactions among monocytes, macrophages, endothelial cells and carcinoma cells, and each of their supporting stroma, which contribute to the metastatic phenotype. The goals of the program are to: (1) Dissect the role the microenvironment in tumor progression and metastasis, in particular, the contribution of macrophage subpopulations to the various phases and elements of tumor progression; 2) to elucidate the molecular mechanisms of growth factor and cytokine action in regulating cell migration, dissemination, angiogenesis and invasion of distant sites by primary tumor cells; 3) to assess the role of surface molecules, such a cadherins and membrane surface oligosaccharides, in tumor progression; (4) to characterize the biochemical and structural properties of molecules that regulate cytoskeletal proteins involved in tumor cell and macrophage motility through the development of (i) fluorescent biosensors of the activity status of pathways involved in regulating cell migration in vivo and (ii) photo-switchable proteins for quantitative long-term tracking of distinct groups of cells photomarked in the primary tumor and (5) to translate these findings into correlative studies with human tissues that are predictive of metastatic potential and risk, and that identify therapeutic targets. New imaging technologies are developed in the Gruss Lipper Biophotonics Center that provides this program with unique tools that are made available to the broader AECC community through the Analytical Imaging Shared Resource. Intrinsic to the experimental approach is the development of novel mouse transgenic models with fluorescently-labeled cellular lineages. The research by members of this program is integrated by a major shared focus on breast cancer, although other tumor types are studied as well. Research in this program is supported, in part, by a program project grant which reflects, and furthers, the collaborative research of members of this program. There are currently 24 members from 11 departments, of whom 10 are new to the program, supported by 22 NCI grants ($4.1M Direct) and 18 other peer-reviewed cancer-relevant grants ($3.5M Direct). Since the last CCSG review there have been 239 cancer-relevant research papers by members of this program of which 23% represent intraprogrammatic, and 28% represent interprogrammatic publications.

Public Health Relevance

The spread of tumors from their sites of origin is usually the cause of death due to cancer. This program studies how cancer cells dislodge from tumors, invade surrounding tissues and blood vessels where they are transported in the blood stream to organs like lung, liver, and brain - a process called metastasis. This program is seeking to develop tests to identify which tumors are likely to metastasize and to develop drugs that prevent metastasis. The major focus is on

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA013330-42
Application #
8885674
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
2015-08-31
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
42
Fiscal Year
2015
Total Cost
$331,292
Indirect Cost
$162,761
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Willis, Ian M; Moir, Robyn D; Hernandez, Nouria (2018) Metabolic programming a lean phenotype by deregulation of RNA polymerase III. Proc Natl Acad Sci U S A 115:12182-12187
Hayama, Ryo; Sparks, Samuel; Hecht, Lee M et al. (2018) Thermodynamic characterization of the multivalent interactions underlying rapid and selective translocation through the nuclear pore complex. J Biol Chem 293:4555-4563
Martynova, Elena; Bouchard, Maxime; Musil, Linda S et al. (2018) Identification of Novel Gata3 Distal Enhancers Active in Mouse Embryonic Lens. Dev Dyn 247:1186-1198
Huang, Kezhen; Mukherjee, Subhajit; DesMarais, Vera et al. (2018) Targeting the PXR-TLR4 signaling pathway to reduce intestinal inflammation in an experimental model of necrotizing enterocolitis. Pediatr Res 83:1031-1040
Bines, Jose; Tevaarwerk, Amye J (2018) Baby steps: Pregnancy outcomes after human epidermal growth factor receptor 2-targeted therapy. Cancer :
Mathew, Deepti; Wang, Yanhua; Van Arsdale, Anne et al. (2018) Expression of ?V-Tubulin in Secretory Cells of the Fallopian Tube Epithelium Marks Cellular Atypia. Int J Gynecol Cancer 28:363-370
Mao, Kai; Quipildor, Gabriela Farias; Tabrizian, Tahmineh et al. (2018) Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nat Commun 9:2394
Entenberg, David; Voiculescu, Sonia; Guo, Peng et al. (2018) A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nat Methods 15:73-80
Iqbal, Niloy Jafar; Lu, Zhonglei; Liu, Shun Mei et al. (2018) Cyclin-dependent kinase 4 is a preclinical target for diet-induced obesity. JCI Insight 3:
Sharma, Yogeshwar; Liu, Jinghua; Kristian, Kathleen E et al. (2018) In Atp7b-/- Mice Modeling Wilson's Disease Liver Repopulation with Bone Marrowderived Myofibroblasts or Inflammatory Cells and not Hepatocytes is Deleterious. Gene Expr :

Showing the most recent 10 out of 1508 publications