The Gene Targeting and Transgenic facility was founded over 20 years ago to assist AECC researchers in the generation of genetically modified mouse models of human disease. Until recently, the Gene Targeting and Transgenic components operated as independent Shared Resources, each being rated outstanding at the last CCSG review. Following relocation to new state-of-the-art laboratory space in the Price Center, the facilities were merged into one Gene Targeting and Transgenic Shared Resource. The Transgenic component of the facility continues to generate, with high efficiency (-100% success rate), transgenic mouse strains through the introduction of DNA sequences, such as regular plasmid vectors or BAC clones into the germ line by pronuclear injection or by lentivirus infection of fertilized oocytes. For each project, the facility supervisor consults with individual investigators and advises on transgene construct design, as well as making plasmids and sequence cassettes available to ensure suitable for expression in the mouse. Typically 20-25 investigators use this service with approximately 100 constructs injected per year. The Gene Targeting component continues to provide services for modification of the mouse genome through the use of gene targeting methods in embryonic stem (ES) cells and introduction of these changes into the mouse germline. Gene Targeting services include the generation of conventional knockout mouse lines, knock-in mouse lines and mouse lines with conditional alleles for the temporal and spatial ablation of genes. The facility has a high success rate (>95%) for obtaining gene targeted mouse. Finally, a new Gene Modification Service was implemented by the Albert Einstein College of Medicine to provide a complete service for the rapid and cost efficient generation of genetically modified mouse lines to all AECC investigators. Services include the design and generation of simple and complex gene targeting vectors, electroporation and screening of embryonic stem cell lines of various genetic backgrounds (129, B6 and 129/06) and the generation of chimeric mice by blastocyst injection (performed by the Gene Targeting facility). The Gene Modification Service has also developed new technologies and procedures for high-throughput generation of targeting vectors and screening procedures and began full operation in early 2012.

Public Health Relevance

The Gene Targeting and Transgenic Shared Resource provides services for the generation of genetically modified mouse models of human diseases, supporting the translational research mission and goals of the Albert Einstein Cancer Center (AECC). As an NCI-designated Cancer Center, AECC contributes to the national effort to reduce morbidity and mortality from cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA013330-45
Application #
9369677
Study Section
Subcommittee I - Transistion to Independence (NCI)
Program Officer
Roberson, Sonya
Project Start
Project End
2019-06-30
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
45
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine, Inc
Department
Type
DUNS #
079783367
City
Bronx
State
NY
Country
United States
Zip Code
10461
Van Arsdale, Anne R; Arend, Rebecca C; Cossio, Maria J et al. (2018) Insulin-like growth factor 2: a poor prognostic biomarker linked to racial disparity in women with uterine carcinosarcoma. Cancer Med 7:616-625
Ruiz, Penelope D; Gamble, Matthew J (2018) MacroH2A1 chromatin specification requires its docking domain and acetylation of H2B lysine 20. Nat Commun 9:5143
Rohan, Thomas; Ye, Kenny; Wang, Yihong et al. (2018) MicroRNA expression in benign breast tissue and risk of subsequent invasive breast cancer. PLoS One 13:e0191814
Walters, Ryan O; Arias, Esperanza; Diaz, Antonio et al. (2018) Sarcosine Is Uniquely Modulated by Aging and Dietary Restriction in Rodents and Humans. Cell Rep 25:663-676.e6
Racine, Jeremy J; Stewart, Isabel; Ratiu, Jeremy et al. (2018) Improved Murine MHC-Deficient HLA Transgenic NOD Mouse Models for Type 1 Diabetes Therapy Development. Diabetes 67:923-935
Frimer, Marina; Miller, Eirwen M; Shankar, Viswanathan et al. (2018) Adjuvant Pelvic Radiation ""Sandwiched"" Between Paclitaxel/Carboplatin Chemotherapy in Women With Completely Resected Uterine Serous Carcinoma: Long-term Follow-up of a Prospective Phase 2 Trial. Int J Gynecol Cancer 28:1781-1788
Kale, Abhijit; Ji, Zhejun; Kiparaki, Marianthi et al. (2018) Ribosomal Protein S12e Has a Distinct Function in Cell Competition. Dev Cell 44:42-55.e4
Lee, Chang-Hyun; Kiparaki, Marianthi; Blanco, Jorge et al. (2018) A Regulatory Response to Ribosomal Protein Mutations Controls Translation, Growth, and Cell Competition. Dev Cell 46:456-469.e4
Mao, Serena P H; Park, Minji; Cabrera, Ramon M et al. (2018) Loss of amphiregulin reduces myoepithelial cell coverage of mammary ducts and alters breast tumor growth. Breast Cancer Res 20:131
Mocholi, Enric; Dowling, Samuel D; Botbol, Yair et al. (2018) Autophagy Is a Tolerance-Avoidance Mechanism that Modulates TCR-Mediated Signaling and Cell Metabolism to Prevent Induction of T Cell Anergy. Cell Rep 24:1136-1150

Showing the most recent 10 out of 1508 publications