The long-term goal of the Breast Cancer (BC) Program is to apply this knowledge of biology, genetics and biochemistry of breast cancer towards diagnostic, therapeutic and preventive strategies. To achieve this end, the following Specific Goals will be pursued: 1) To identify aberrant regulatory pathways in breast cancer pathogenesis. Specifically, by analyzing tumor biopsies and model systems, we will dissect the pathways responsible for distinct subtypes of breast cancer and elucidate their mechanistic role in tumor development. 2) To optimize the treatment and prevention of breast cancer. By using tissue, serum and imaging-based biomarkers, we will identify suitable patients for targeted therapy and then measure its efficacy. 3) To improve the quality of breast cancer care. By using novel methodologies to characterize the short and long term risks associated with standard breast cancer treatment, we will conduct clinical trials to evaluate novel interventions to diminish these effects. Since the prior grant period, the number of institution-based clinical trials in breast cancer and the number of patients accrued to therapeutic and supportive care trials has increased, with 5 investigators leading a total of 8 NCI Cooperative Group Trials. The number of new breast cancer cases averaged 437/year;of these, 66 patients/year (peak 76) enrolled on therapeutic clinical trials (15%) and 135 patients/year patients accrued to non-therapeutic interventional trials per year (31%). The majority of these clinical trials were investigator initiated and 48% of patients accrued were minorities. The BC program consists of 28 members (19 full) from eleven departments within the College of Physicians &Surgeons, the Mailman School of Public Health and Biomedical Engineering at Columbia University. The Program is enhanced by large program project grants, including a breast cancer NCI POI focused on signaling pathways in triple negative breast cancer and a DOD Center of Excellence focused on disparities in breast cancer treatment. For the last budget period of the grant (July 1, 2012 - June 30, 2013), the BC Program received a total of $6.48M (direct costs) in cancer-relevant grant support, including $2.48M (direct costs) in NCI funding, $2.84M (direct costs) in other cancer-related peer-reviewed funding, and $1.21M (direct costs) in cancer-related non-peer-reviewed funding. The total number of publications since the previous submission (i.e., 2008-present) was 366, of which 13% were intra-programmatic, 39% inter-programmatic and 21% were in high impact journals (Impact Factor >10).

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA013696-40
Application #
8753111
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-07-04
Project End
2019-06-30
Budget Start
2014-07-17
Budget End
2015-06-30
Support Year
40
Fiscal Year
2014
Total Cost
$33,319
Indirect Cost
$12,495
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Bassuk, Alexander G; Sujirakul, Tharikarn; Tsang, Stephen H et al. (2014) A novel RPGR mutation masquerading as Stargardt disease. Br J Ophthalmol 98:709-11
Li, Yao; Wu, Wen-Hsuan; Hsu, Chun-Wei et al. (2014) Gene therapy in patient-specific stem cell lines and a preclinical model of retinitis pigmentosa with membrane frizzled-related protein defects. Mol Ther 22:1688-97
Wert, Katherine J; Sancho-Pelluz, Javier; Tsang, Stephen H (2014) Mid-stage intervention achieves similar efficacy as conventional early-stage treatment using gene therapy in a pre-clinical model of retinitis pigmentosa. Hum Mol Genet 23:514-23
Shen, Sherry; Sujirakul, Tharikarn; Tsang, Stephen H (2014) Next-generation sequencing revealed a novel mutation in the gene encoding the beta subunit of rod phosphodiesterase. Ophthalmic Genet 35:142-50
Palomero, Teresa; Couronné, Lucile; Khiabanian, Hossein et al. (2014) Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet 46:166-70
Higuchi-Sanabria, Ryo; Pernice, Wolfgang M A; Vevea, Jason D et al. (2014) Role of asymmetric cell division in lifespan control in Saccharomyces cerevisiae. FEMS Yeast Res 14:1133-46
Lam, A T; Curschellas, C; Krovvidi, D et al. (2014) Controlling self-assembly of microtubule spools via kinesin motor density. Soft Matter 10:8731-6
Olszak, Torsten; Neves, Joana F; Dowds, C Marie et al. (2014) Protective mucosal immunity mediated by epithelial CD1d and IL-10. Nature 509:497-502
Murtomaki, Aino; Uh, Minji K; Kitajewski, Chris et al. (2014) Notch signaling functions in lymphatic valve formation. Development 141:2446-51
Nong, Eva; Lee, Winston; Merriam, Joanna E et al. (2014) Disease progression in autosomal dominant cone-rod dystrophy caused by a novel mutation (D100G) in the GUCA1A gene. Doc Ophthalmol 128:59-67

Showing the most recent 10 out of 142 publications