The Developmental Funds at this CCSG are also used to fund pilot projects in new research directions. The ability to provide funding for pilot projects is a highly effective mechanism for the Director and Program Leaders to influence the progress of cancer research at MIT and to rapidly respond to new opportunities and new strategic directions. It also represents a means to bring different Kl members together in collaborative projects. Pilot projects are expected to be novel and eariy-stage. They are often high risk/high reward in nature, and it is anticipated that the funding will allow for the generation of preliminary data that might form the basis of future grant applications. During the past grant period, eight pilot projects were selected for funding. Funds were awarded to projects in years 32, 34 and 37. Due to budget reductions in the CCSG, we were able to support fewer pilot projects than originally planned. However, as described below, projects that were funded have led to a series of very interesting observations, several publications and some new grant applications. In the current application, we are seeking funds sufficient to support 3 pilot projects annually. As is currentiy the case, applications will be reviewed by the Kl Director and a committee of faculty and awarded on the basis of both the quality of the application and on the novelty of the approaches proposed. Program leaders are encouraged to stimulate new directions of research within their Programs by encouraging their members to apply for pilot project funding; they also help to organize intra- and inter-programmatic collaborations. As has been true in the past, we anticipate that this mechanism will be very effective in assisting Kl members to embark on innovative research projects with potential for a significant impact on cancer diagnosis, treatment and control. With the introduction of the Koch Clinical Investigators Program as well as increased interactions with local clinical centers, there is an increased opportunity for clinically-oriented pilot projects.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014051-41
Application #
8377094
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
41
Fiscal Year
2012
Total Cost
$119,472
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Roper, Jatin; Tammela, Tuomas; Cetinbas, Naniye Malli et al. (2017) In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat Biotechnol 35:569-576
Gocheva, Vasilena; Naba, Alexandra; Bhutkar, Arjun et al. (2017) Quantitative proteomics identify Tenascin-C as a promoter of lung cancer progression and contributor to a signature prognostic of patient survival. Proc Natl Acad Sci U S A 114:E5625-E5634
Fenouille, Nina; Bassil, Christopher F; Ben-Sahra, Issam et al. (2017) The creatine kinase pathway is a metabolic vulnerability in EVI1-positive acute myeloid leukemia. Nat Med 23:301-313
Castleberry, Steven A; Quadir, Mohiuddin A; Sharkh, Malak Abu et al. (2017) Polymer conjugated retinoids for controlled transdermal delivery. J Control Release 262:1-9
Lippok, Norman; Villiger, Martin; Albanese, Alexandre et al. (2017) Depolarization signatures map gold nanorods within biological tissue. Nat Photonics 11:583-588
Chen, Tiffany F; Sazinsky, Stephen L; Houde, Damian et al. (2017) Engineering Aglycosylated IgG Variants with Wild-Type or Improved Binding Affinity to Human Fc Gamma RIIA and Fc Gamma RIIIAs. J Mol Biol 429:2528-2541
Doloff, Joshua C; Veiseh, Omid; Vegas, Arturo J et al. (2017) Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat Mater 16:671-680
Suzuki, Hiroshi I; Young, Richard A; Sharp, Phillip A (2017) Super-Enhancer-Mediated RNA Processing Revealed by Integrative MicroRNA Network Analysis. Cell 168:1000-1014.e15
Gu, Li; Deng, Zhou J; Roy, Sweta et al. (2017) A Combination RNAi-Chemotherapy Layer-by-Layer Nanoparticle for Systemic Targeting of KRAS/P53 with Cisplatin to Treat Non-Small Cell Lung Cancer. Clin Cancer Res 23:7312-7323
Venteicher, Andrew S; Tirosh, Itay; Hebert, Christine et al. (2017) Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355:

Showing the most recent 10 out of 829 publications