This shared resource provides fee-for-service support for many aspects of the generation and study of mouse models human cancer. The ES Cell and Transgenics Facility specializes in assisting researchers with the design, generation, maintenance, and analysis of mice containing designer mutations. The staff also provides skilled assistance with a variety of protocols utilizing mouse ES cells (establishment of new lines, differentiation into specific cell types). Members of the Koch Institute have been leaders in the use of mouse models to study the molecular basis of the tumor development and increasingly in cancer treatment and resistance. The ES Cell & Transgenics Core Facility (formerly the Transgenic Animal Core) acts as a centralized service to ensure that all Kl members have access to mouse modeling technology. Specifically, the Core provides consultative services to help Kl investigators design their gene targeting and overall modeling strategy, produces genetically-modified ES cells (by either gene targeting or de novo isolation from blastocytes) and conducts injections to generate chimeric and transgenic mice. The ES Cell &Transgenics Core places equal emphasis on investigator education and provides state-of-the-art training to Kl researchers in any or all the procedures required to create targeted ES cells, transgenics, and mutant mouse models. It also maintains a repository of useful mouse strains, including strains expressing Cre or Flp recombinase under tissue-specific or inducible promoters, which are provided on demand. Over the current funding period, there has been a dramatic increase in the number of Kl members who use this Core. To ensure that services are provided in a timely manner, the Core's ES Cell Suite has been relocated to an improved location and we have increased the staff, the T ES Cell &Transgenics Core has also continued to expand its services to remain on the cutting edge. For example, it has capitalized on its access to the scientists who first generated ES cell-derived mice by tetraploid embryo complementation by learning and optimizing this technique so that can be offered as a robust service. With an excellent menu of reliable and efficient services, flexibility to accommodate unique requests and a dedicated, talented and enthusiastic staff, the ES Cell &Transgenics Core is well situated to support Kl investigators in their goal of generating increasingly precise mouse models and also to continue to expand into new areas of cancer research using cutting-edge techniques.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014051-43
Application #
8680158
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
43
Fiscal Year
2014
Total Cost
$147,728
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Castellarnau, M; Szeto, G L; Su, H-W et al. (2015) Stochastic particle barcoding for single-cell tracking and multiparametric analysis. Small 11:489-98
Lunt, Sophia Y; Muralidhar, Vinayak; Hosios, Aaron M et al. (2015) Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol Cell 57:95-107
Liu, Haipeng; Moynihan, Kelly D; Zheng, Yiran et al. (2014) Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507:519-22
Chan, Ka Man Carmen; Li, Randolph H; Chapman, Joseph W et al. (2014) Functionalizable hydrogel microparticles of tunable size and stiffness for soft-tissue filler applications. Acta Biomater 10:2563-73
Sukup-Jackson, Michelle R; Kiraly, Orsolya; Kay, Jennifer E et al. (2014) Rosa26-GFP direct repeat (RaDR-GFP) mice reveal tissue- and age-dependence of homologous recombination in mammals in vivo. PLoS Genet 10:e1004299
Pallasch, Christian P; Leskov, Ilya; Braun, Christian J et al. (2014) Sensitizing protective tumor microenvironments to antibody-mediated therapy. Cell 156:590-602
Murphy, Patrick A; Hynes, Richard O (2014) Alternative splicing of endothelial fibronectin is induced by disturbed hemodynamics and protects against hemorrhage of the vessel wall. Arterioscler Thromb Vasc Biol 34:2042-50
Meira, Lisiane B; Calvo, Jennifer A; Shah, Dharini et al. (2014) Repair of endogenous DNA base lesions modulate lifespan in mice. DNA Repair (Amst) 21:78-86
Labelle, Myriam; Begum, Shahinoor; Hynes, Richard O (2014) Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A 111:E3053-61
Shlomai, Amir; Schwartz, Robert E; Ramanan, Vyas et al. (2014) Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc Natl Acad Sci U S A 111:12193-8

Showing the most recent 10 out of 309 publications