The Flow Cytometry Core provides USC Norris Comprehensive Cancer Center (NCCC) members access to advanced multi-parameter cellular analytic and cell sorting capabilities which includes the fluorescence activated cell sorting (FACS) of various populations of cells to provide a purified cell population for the researchers. The Core also provides expertise to allow investigators to analyze the expression of various markers on a cell population using fluorescence-based methods. This Core is administratively managed by the Broad Center for Regenerative Medicine and Stem Cell Research (CSCRM). Previously, flow cytometry services were provided by a core facility managed by NCCC with partial support from the CCSG. On December 1, 2009, NCCC partnered with CSCRM, who took over the provision of flow cytometry services to NCCC investigators under the directorship of Dr. Gregor Adams. This transition was a direct result of the NCCC Executive Committee's review of its shared resources in mid-2008, and endorsed by the NCCC's External Advisory Committee in April 2009. The partnership benefits NCCC investigators by giving them access to newer cytometers with more capabilities, as well as a reduction in the cost of flow cytometry services. The Core currently maintains four cytometers, a Beekman Coulter CyAn analyzer, a BD LSR II analyzer, BD FACSAria and BD FACSAria 11 cell sorters. The LSRII and the Aria are equipped with a 350 nm UV, a 488 nm argon laser, and a 635 nm red diode laser, while the Aria II is equipped with a 405 nm violet laser, a 488 nm argon laser and a 633 nm red diode laser, which will ultimately permit up to 15 parameter analysis.

Public Health Relevance

Many cancer research projects require the isolation of a purified population of cells for analysis. The Flow Cytometry Core provides all of the necessary expertise and facilities to perform these experiments. This is an essential component of research aimed at treating many malignant conditions.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014089-37
Application #
8555591
Study Section
Subcommittee G - Education (NCI)
Project Start
1996-12-01
Project End
2015-11-30
Budget Start
2012-02-10
Budget End
2012-11-30
Support Year
37
Fiscal Year
2012
Total Cost
$79,751
Indirect Cost
$28,842
Name
University of Southern California
Department
Type
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Peres, Lauren C; Risch, Harvey; Terry, Kathryn L et al. (2018) Racial/ethnic differences in the epidemiology of ovarian cancer: a pooled analysis of 12 case-control studies. Int J Epidemiol 47:460-472
Sebio, A; Stintzing, S; Heinemann, V et al. (2018) A genetic variant in Rassf1a predicts outcome in mCRC patients treated with cetuximab plus chemotherapy: results from FIRE-3 and JACCRO 05 and 06 trials. Pharmacogenomics J 18:43-48
Guo, Hao; Lee, Changrim; Shah, Mihir et al. (2018) A novel elastin-like polypeptide drug carrier for cyclosporine A improves tear flow in a mouse model of Sjögren's syndrome. J Control Release 292:183-195
Peddi, Santosh; Pan, Xiaoli; MacKay, John Andrew (2018) Intracellular Delivery of Rapamycin From FKBP Elastin-Like Polypeptides Is Consistent With Macropinocytosis. Front Pharmacol 9:1184
Zhao, Yi; Wu, Kaijin; Wu, Yongfeng et al. (2018) Characterization of Imatinib Resistant CML Leukemic Stem/Initiating Cells and Their Sensitivity to CBP/Catenin Antagonists. Curr Mol Pharmacol 11:113-121
Kahn, Michael (2018) Wnt Signaling in Stem Cells and Cancer Stem Cells: A Tale of Two Coactivators. Prog Mol Biol Transl Sci 153:209-244
Park, Sungshim L; Patel, Yesha M; Loo, Lenora W M et al. (2018) Association of internal smoking dose with blood DNA methylation in three racial/ethnic populations. Clin Epigenetics 10:110
Liu, Jie; Liang, Gangning; Siegmund, Kimberly D et al. (2018) Data integration by multi-tuning parameter elastic net regression. BMC Bioinformatics 19:369
McDonnell, Kevin J; Chemler, Joseph A; Bartels, Phillip L et al. (2018) A human MUTYH variant linking colonic polyposis to redox degradation of the [4Fe4S]2+ cluster. Nat Chem 10:873-880
Schirripa, Marta; Zhang, Wu; Yang, Dongyun et al. (2018) NOS2 polymorphisms in prediction of benefit from first-line chemotherapy in metastatic colorectal cancer patients. PLoS One 13:e0193640

Showing the most recent 10 out of 842 publications