The overall goal of this program is to emphasize scientific paradigms focused on treatment of local / regional disease, with the ultimate objective of achieving long term control of such tumors, while maintaining normal tissue integrity. The paradigm is being approached two ways: 1) Therapeutic approaches to increase tumor response or reduce normal tissue damage, and 2) Development of diagnostic methods to predict outcome or guide therapeutic decisions before or during treatment. The fact that radiation therapy is used as part of therapy for nearly all forms of cancer means that the clinical collaborations are varied and multidisciplinary. Members cross many disciplines, including molecular biology and signal transduction, transgenic model development, physiology, angiogenesis, hyperthermia, engineering, drug carrier development, imaging, radiation biology and clinical trial development and conduct. This program is centered in a clinical department, which helps to focus efforts toward translational studies. The program has incorporated MR and CT/PET imaging capabilities into research activities with the acquisition of this hardware for research purposes. Several protocols now include opportunities for direct acquisition of tissues and / or plasma samples that can be used for correlative science investigations. Significant improvement has been made in the basic science component of the program, with successful recruitment of clinical faculty with interests in transgenic models of human cancer and in translational studies involving breast cancer radiotherapy. The program sponsors several venues for interaction, offered on a bi-weekly to yearly basis to facilitate collaborations within and with other programs. Since the last competing renewal, members of this program have published 424 peer reviewed papers;over 90% of which have been directly related to cancer. Nearly 50% of the publications have involved inter- or intra- programmatic collaborations. The patient census has grown by 35%, from 978 treatment starts in 2004 to well over 1300 in 2007. The percentage of patients enrolled on protocols has averaged just over 6%. Accrual of minorities and women has averaged 18% and 57%, respectively. Clinical trial and grants management infrastructure has been substantially improved, which is paying dividends with respect to easing initiation of new investigator initiated trials. The Program includes 24 members from 5 basic and clinical departments. Total funding for program members is $12,819,957, of Which $8,288,024 is from peer-reviewed sources. A cancer focus is illustrated by $4,758,760 or 57.4% of funding from the NCI, the American Cancer Society or the Department of Defense.

Public Health Relevance

Approximately 50% of all cancer patients are treated with radiotherapy, and of those, a significant percentage are treated with curative intent. Given the widespread use of this modality, it is imperative that means be established to increase the likelihood that local tumor control can be achieved, while preserving the integrity of normal tissues. This common paradigm fits this program well, but it is now being addressed with modern radiotherapy practices in the context of cutting-edge imaging and translational sciences.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014236-39
Application #
8424157
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-01-01
Budget End
2013-12-31
Support Year
39
Fiscal Year
2013
Total Cost
$33,150
Indirect Cost
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Adams, Rebecca N; Mosher, Catherine E; Blair, Cindy K et al. (2015) Cancer survivors' uptake and adherence in diet and exercise intervention trials: an integrative data analysis. Cancer 121:77-83
Pruszynski, Marek; Koumarianou, Eftychia; Vaidyanathan, Ganesan et al. (2014) Improved tumor targeting of anti-HER2 nanobody through N-succinimidyl 4-guanidinomethyl-3-iodobenzoate radiolabeling. J Nucl Med 55:650-6
Batinic-Haberle, Ines; Tovmasyan, Artak; Roberts, Emily R H et al. (2014) SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal 20:2372-415
Sachdeva, Mohit; Mito, Jeffrey K; Lee, Chang-Lung et al. (2014) MicroRNA-182 drives metastasis of primary sarcomas by targeting multiple genes. J Clin Invest 124:4305-19
Tovmasyan, Artak; Carballal, Sebastian; Ghazaryan, Robert et al. (2014) Rational design of superoxide dismutase (SOD) mimics: the evaluation of the therapeutic potential of new cationic Mn porphyrins with linear and cyclic substituents. Inorg Chem 53:11467-83
Azrad, Maria; Demark-Wahnefried, Wendy (2014) The association between adiposity and breast cancer recurrence and survival: A review of the recent literature. Curr Nutr Rep 3:9-15
Blair, Cindy K; Madan-Swain, Avi; Locher, Julie L et al. (2013) Harvest for health gardening intervention feasibility study in cancer survivors. Acta Oncol 52:1110-8
Mito, Jeffrey K; Min, Hooney D; Ma, Yan et al. (2013) Oncogene-dependent control of miRNA biogenesis and metastatic progression in a model of undifferentiated pleomorphic sarcoma. J Pathol 229:132-40
Pruszynski, Marek; Koumarianou, Eftychia; Vaidyanathan, Ganesan et al. (2013) Targeting breast carcinoma with radioiodinated anti-HER2 Nanobody. Nucl Med Biol 40:52-9
Hover, Bradley M; Loksztejn, Anna; Ribeiro, Anthony A et al. (2013) Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis. J Am Chem Soc 135:7019-32

Showing the most recent 10 out of 161 publications