The goal of the Program in Structural and Chemical Biology Is to provide a molecular description and interpretation of biological processes associated with oncogenesis and tumor progression. Together, the tools of structural and chemical biology permit investigation of fundamental aspects of cancer biology, the design of small molecule probes for biological discovery, the design and synthesis of small molecule therapeutics, and development of novel molecular and cellular technologies. Program members include those with expertise in organic synthesis, chemical biology. X-ray crystallography and NMR analyses, enzymology, and modeling at the molecular level. Program members provide valuable consultation and technology to other Cancer Institute investigators who have identified molecules involved in cellular transformation, and this serves to stimulate the exchange of technology and expertise between members of the Program as well as with other members of the Cancer Institute. Program members have provided the leadership for a number of Initiatives that have markedly enhanced the technological capabilities available to the cancer community at Duke, Including the upgrade and expansion of our X-ray crystallography and NMR facility, establishment of a state-of-the-art proteomics facility, and the establishment of core facilities that provide small molecule synthetic capabilities and enable high-throughput screening of small molecule libraries. The Program includes 21 members from 6 basic and clinical departments within Duke University.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014236-40
Application #
8601805
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
40
Fiscal Year
2014
Total Cost
$29,933
Indirect Cost
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Adams, Rebecca N; Mosher, Catherine E; Blair, Cindy K et al. (2015) Cancer survivors' uptake and adherence in diet and exercise intervention trials: an integrative data analysis. Cancer 121:77-83
Pruszynski, Marek; Koumarianou, Eftychia; Vaidyanathan, Ganesan et al. (2014) Improved tumor targeting of anti-HER2 nanobody through N-succinimidyl 4-guanidinomethyl-3-iodobenzoate radiolabeling. J Nucl Med 55:650-6
Batinic-Haberle, Ines; Tovmasyan, Artak; Roberts, Emily R H et al. (2014) SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal 20:2372-415
Sachdeva, Mohit; Mito, Jeffrey K; Lee, Chang-Lung et al. (2014) MicroRNA-182 drives metastasis of primary sarcomas by targeting multiple genes. J Clin Invest 124:4305-19
Tovmasyan, Artak; Carballal, Sebastian; Ghazaryan, Robert et al. (2014) Rational design of superoxide dismutase (SOD) mimics: the evaluation of the therapeutic potential of new cationic Mn porphyrins with linear and cyclic substituents. Inorg Chem 53:11467-83
Azrad, Maria; Demark-Wahnefried, Wendy (2014) The association between adiposity and breast cancer recurrence and survival: A review of the recent literature. Curr Nutr Rep 3:9-15
Blair, Cindy K; Madan-Swain, Avi; Locher, Julie L et al. (2013) Harvest for health gardening intervention feasibility study in cancer survivors. Acta Oncol 52:1110-8
Mito, Jeffrey K; Min, Hooney D; Ma, Yan et al. (2013) Oncogene-dependent control of miRNA biogenesis and metastatic progression in a model of undifferentiated pleomorphic sarcoma. J Pathol 229:132-40
Pruszynski, Marek; Koumarianou, Eftychia; Vaidyanathan, Ganesan et al. (2013) Targeting breast carcinoma with radioiodinated anti-HER2 Nanobody. Nucl Med Biol 40:52-9
Hover, Bradley M; Loksztejn, Anna; Ribeiro, Anthony A et al. (2013) Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis. J Am Chem Soc 135:7019-32

Showing the most recent 10 out of 161 publications