The Duke Cancer Institute Information Systems group (DCI IS) is a shared resource providing information systems to DCI members in support of clinical, translational, and basic biomedical research. The goal of the IS Resource is to provide comprehensive computational support to enable researchers to use technology in the most efficient manner possible to accomplish their research goals. It is closely integrated with DCI's Bioinformatics and Biostatistics Shared Resources. Since the last renewal of the Cancer Center Support Grant (CCSG), the IS Resource's compute environment has been completely refreshed, providing a 162% increase in processor cores, an 833% increase in memory and a 292% increase in primary storage. The virtualization platform has also been refreshed since the last renewal. DCI IS and its 13 staff members are organized into three teams: (1) the service desk/systems team, (2) the application development team, and (3) the database management team. All personnel are managed by Resource Director Jeffrey Allred under the administrative direction of the Chief Research Operations Officer for the DCI. Staff experience includes strong proficiency in clinical trial building and management, web, application and database development, and information technology infrastructure. Resource personnel provide systems management, network administration, database development/administration, and web/application development/support, plus server and desktop support for 90 servers and for approximately 1000 users in DCI member laboratories. DCI IS also provides support for large scale servers and software for the DCI's Biostatistics and Bioinformatics Shared Resources. These three DCI Shared Resources are co-located, making collaboration straightforward to meet DCI members' needs. The IS Shared Resource provides an integrated, accommodating, and harmonized IT environment that supports the highest quality standards in research at the DCI.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014236-44
Application #
9404305
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2018-01-01
Budget End
2018-12-31
Support Year
44
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Wu, Mengxi; Huang, Po-Hsun; Zhang, Rui et al. (2018) Circulating Tumor Cell Phenotyping via High-Throughput Acoustic Separation. Small 14:e1801131
Vlahovic, Gordana; Meadows, Kellen L; Hatch, Ace J et al. (2018) A Phase I Trial of the IGF-1R Antibody Ganitumab (AMG 479) in Combination with Everolimus (RAD001) and Panitumumab in Patients with Advanced Cancer. Oncologist 23:782-790
Xu, Yinghui; Liu, Hongliang; Liu, Shun et al. (2018) Genetic variant of IRAK2 in the toll-like receptor signaling pathway and survival of non-small cell lung cancer. Int J Cancer 143:2400-2408
Feng, Yun; Wang, Yanru; Liu, Hongliang et al. (2018) Novel genetic variants in the P38MAPK pathway gene ZAK and susceptibility to lung cancer. Mol Carcinog 57:216-224
Naqvi, Ibtehaj; Gunaratne, Ruwan; McDade, Jessica E et al. (2018) Polymer-Mediated Inhibition of Pro-invasive Nucleic Acid DAMPs and Microvesicles Limits Pancreatic Cancer Metastasis. Mol Ther 26:1020-1031
Wen, Juyi; Liu, Hongliang; Wang, Lili et al. (2018) Potentially Functional Variants of ATG16L2 Predict Radiation Pneumonitis and Outcomes in Patients with Non-Small Cell Lung Cancer after Definitive Radiotherapy. J Thorac Oncol 13:660-675
Li, Bo; Wang, Yanru; Xu, Yinghui et al. (2018) Genetic variants in RORA and DNMT1 associated with cutaneous melanoma survival. Int J Cancer 142:2303-2312
Gearhart-Serna, Larisa M; Jayasundara, Nishad; Tacam Jr, Moises et al. (2018) Assessing Cancer Risk Associated with Aquatic Polycyclic Aromatic Hydrocarbon Pollution Reveals Dietary Routes of Exposure and Vulnerable Populations. J Environ Public Health 2018:5610462
Bakthavatsalam, Subha; Sleeper, Mark L; Dharani, Azim et al. (2018) Leveraging ?-Glutamyl Transferase To Direct Cytotoxicity of Copper Dithiocarbamates against Prostate Cancer Cells. Angew Chem Int Ed Engl 57:12780-12784
Dai, Ziwei; Mentch, Samantha J; Gao, Xia et al. (2018) Methionine metabolism influences genomic architecture and gene expression through H3K4me3 peak width. Nat Commun 9:1955

Showing the most recent 10 out of 513 publications