The Flow Cytometry Laboratory (Flow Lab) was established by the University of Wisconsin Carbone Cancer Center (UWCCC) in 1988 to support the laboratory, translational and clinical research activities of our members. The mission of the Flow Lab is to provide state-of-the-art instrumentation, technical expertise, cutting edge and cost-effective services and high quality education programs to advance laboratory, translational and clinical cancer research through the use of flow cytometry and high content cell imaging. The Flow Lab currently provides services at two sites. The main laboratory is located at the Wisconsin Institutes for Medical Research (WIMR), on the west side of the UW-Madison campus and a satellite laboratory is operating at the McArdle Laboratory for Cancer Research (McArdle), on the central UW Madison campus. The Flow Lab maintains four benchtop flow cytometer analysis instruments, two high-speed sorting cytometers, a high-throughput bioimaging microscope, as well as a fluorescent microscope with camera and supporting instrumentation such as biosafety cabinets, centrifuges and incubators. The Flow Lab is staffed from 8;00am to 6;00pm Monday through Friday and instrumentation is available to trained users at all times. Through support from the Cancer Center Support Grant (CCSG), successful instrumentation grants, institutional funds and charges to users, the Flow Lab is able to provide the instrumentation and expertise needed to serve the diverse research needs of UWCCC members in areas relating to use of analytical flow cytometry, cell sorting and high content cell imaging.

Public Health Relevance

The mission of the Flow Cytometry Laboratory is to provide state-of-the-art instruments, technical expertise, cutting edge services and high quality education programs to advance laboratory, translational and clinical cancer research through the use of flow cytometry and high content cell imaging.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014520-40
Application #
8762766
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
40
Fiscal Year
2014
Total Cost
$146,650
Indirect Cost
$59,444
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Pleiman, Jennifer K; Irving, Amy A; Wang, Zhishi et al. (2018) The conserved protective cyclic AMP-phosphodiesterase function PDE4B is expressed in the adenoma and adjacent normal colonic epithelium of mammals and silenced in colorectal cancer. PLoS Genet 14:e1007611
Kletzien, Heidi; Macdonald, Cameron L; Orne, Jason et al. (2018) Comparison Between Patient-Perceived Voice Changes and Quantitative Voice Measures in the First Postoperative Year After Thyroidectomy: A Secondary Analysis of a Randomized Clinical Trial. JAMA Otolaryngol Head Neck Surg 144:995-1003
Kang, Lei; Jiang, Dawei; Ehlerding, Emily B et al. (2018) Noninvasive Trafficking of Brentuximab Vedotin and PET Imaging of CD30 in Lung Cancer Murine Models. Mol Pharm 15:1627-1634
Bulu, Hakan; Sippo, Dorothy A; Lee, Janie M et al. (2018) Proposing New RadLex Terms by Analyzing Free-Text Mammography Reports. J Digit Imaging 31:596-603
Jewett, Patricia I; Gangnon, Ronald E; Elkin, Elena et al. (2018) Geographic access to mammography facilities and frequency of mammography screening. Ann Epidemiol 28:65-71.e2
Albertini, Mark R (2018) The age of enlightenment in melanoma immunotherapy. J Immunother Cancer 6:80
Shull, James D; Dennison, Kirsten L; Chack, Aaron C et al. (2018) Rat models of 17?-estradiol-induced mammary cancer reveal novel insights into breast cancer etiology and prevention. Physiol Genomics 50:215-234
Kang, Lei; Jiang, Dawei; England, Christopher G et al. (2018) ImmunoPET imaging of CD38 in murine lymphoma models using 89Zr-labeled daratumumab. Eur J Nucl Med Mol Imaging 45:1372-1381
Melgar-Asensio, Ignacio; Kandela, Irawati; Aird, Fraser et al. (2018) Extended Intravitreal Rabbit Eye Residence of Nanoparticles Conjugated With Cationic Arginine Peptides for Intraocular Drug Delivery: In Vivo Imaging. Invest Ophthalmol Vis Sci 59:4071-4081
Jang, Samuel; Rosenberg, Stephen A; Hullet, Craig et al. (2018) Value of Elective Radiation Oncology Rotations: How Many Is Too Many? Int J Radiat Oncol Biol Phys 100:558-559

Showing the most recent 10 out of 1528 publications