The Genomics Core Facility (GCF) was created in 2006 by combining two existing institutional cores - the UCCRC-supported DNA Sequencing and Genotyping Facility and the Functional Genomics Facility - with the genomics-related bioinformatics services previously provided by the developing Biomedical Informatics Facility. These resources have become so integral to cutting-edge research in the biological sciences that essentially every laboratory-based investigator in the UCCRC will access them on a regular basis. While these facilities have previously operated independently, their functions overlap in complementary and necessary ways. The merger into a single, integrated Core, a task that will be completed with co-localization in dedicated space in the Knapp Center for Biomedical Discovery (KCBD; a new building which will be completed in 2008), will result in significant benefit to investigators. Over 82 peer-reviewed UCCRC investigators across all six Scientific Programs routinely use the combined Functional Genomics and DNA Sequencing and Genotyping Facilities, representing 44% of Facility usage. The Facility provides state-of-the-art microarray, DNA sequencing, and genotyping platforms with specialized databases for storing, managing, and manipulating both clinical information (phenotypes) and diverse types of genetic and genomic data (genotypes). Expert assistance in the detection technologies, as well as adapting the resulting data to modern database solutions using high-speed specialized hardware and sophisticated commercial and academic software tailored for genomics and bioinformatics research will provide UCCRC investigators who use the GCF the highest standards of data acquisition, protection, confidentiality, and HIPAA compliance currently available to academic researchers. The GCF is aimed towards biomedical researchers who are generally unfamiliar with whole genome and bioinformatics approaches, as well as experts seeking more sophisticated hardware, software, programming, or database solutions, or seeking to facilitate interdisciplinary collaborations. Major goals of the GCF are to provide investigators with scientific and technical staff who can assist with or collaborate on individual projects, provide an educational program that allows investigators to seek their own levels of expertise and sophistication in a given application, and raise awareness of new directions and major discoveries in the areas of genomics and bioinformatics.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014599-37
Application #
8375715
Study Section
Special Emphasis Panel (ZCA1-RTRB-N)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
37
Fiscal Year
2012
Total Cost
$412,245
Indirect Cost
$144,107
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Li, Gang; Montgomery, Jeffrey E; Eckert, Mark A et al. (2017) An activity-dependent proximity ligation platform for spatially resolved quantification of active enzymes in single cells. Nat Commun 8:1775
Stoddart, Angela; Wang, Jianghong; Hu, Chunmei et al. (2017) Inhibition of WNT signaling in the bone marrow niche prevents the development of MDS in the Apcdel/+ MDS mouse model. Blood 129:2959-2970
Wing, Claudia; Komatsu, Masaaki; Delaney, Shannon M et al. (2017) Application of stem cell derived neuronal cells to evaluate neurotoxic chemotherapy. Stem Cell Res 22:79-88
Shah, Palak; Trinh, Elaine; Qiang, Lei et al. (2017) Arsenic Induces p62 Expression to Form a Positive Feedback Loop with Nrf2 in Human Epidermal Keratinocytes: Implications for Preventing Arsenic-Induced Skin Cancer. Molecules 22:
Qiang, Lei; Sample, Ashley; Shea, Christopher R et al. (2017) Autophagy gene ATG7 regulates ultraviolet radiation-induced inflammation and skin tumorigenesis. Autophagy 13:2086-2103
Morita, Shuhei; Villalta, S Armando; Feldman, Hannah C et al. (2017) Targeting ABL-IRE1? Signaling Spares ER-Stressed Pancreatic ? Cells to Reverse Autoimmune Diabetes. Cell Metab 25:1207
Davis, Trevor L; Rebay, Ilaria (2017) Antagonistic regulation of the second mitotic wave by Eyes absent-Sine oculis and Combgap coordinates proliferation and specification in the Drosophila retina. Development 144:2640-2651
Kathayat, Rahul S; Elvira, Pablo D; Dickinson, Bryan C (2017) A fluorescent probe for cysteine depalmitoylation reveals dynamic APT signaling. Nat Chem Biol 13:150-152
Hu, Xue; Li, Li; Yu, Xinyi et al. (2017) CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs). Oncotarget 8:111847-111865
Hasan, Yasmin; Waller, Joseph; Yao, Katharine et al. (2017) Utilization trend and regimens of hypofractionated whole breast radiation therapy in the United States. Breast Cancer Res Treat 162:317-328

Showing the most recent 10 out of 613 publications