r The University of Chicago Genomics Core Facility (GCF) is committed to providing on-campus biomedical researchers (ranging from experts in the field of genomics to those unfamiliar with whole genome and bioinformatics approaches) with access to state-of-the-art genomics resources (next- Generation Sequencing, DNA microarrays, Sanger Sequencing and non-array based genotyping). The GCF was created in 2006 through the merger of two existing University of Chicago Facilities (the UCCCC-supported DNA Sequencing and Genotyping Facility and the Functional Genomics Facility). The GCF continued to offer access to the main genomics services already provided (Sanger sequencing, DNA microarrays, and array-associated bioinformatics support), while adding next-generation sequencing (NGS) services and NGS-associated bioinformatics support. The merger provided a single on-campus contact point for end-users to fulfill all their genomics needs while operationally eliminating the need for many duplicate pieces of auxiliary equipment (e.g., Nanodrop, Bio-Analyzer), as well as allowing far greater flexibility in managing the human work force as demand for services shift over time. Currently, the GCF is operating as two tightly interactive data generating subunits,

Public Health Relevance

The GCF provides access to state-of-the-art genomics platforms. These resources have become so integral to cutting-edge research in the biological sciences that virtually every investigator will access them on a regular basis making on-campus access to these resources invaluable to both expert and novice genomics investigators.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Chicago
United States
Zip Code
Drazer, Michael W; Stadler, Walter M (2016) The Role of Testosterone in the Treatment of Castration-Resistant Prostate Cancer. Cancer J 22:330-333
Sharifi, Marina N; Mowers, Erin E; Drake, Lauren E et al. (2016) Autophagy Promotes Focal Adhesion Disassembly and Cell Motility of Metastatic Tumor Cells through the Direct Interaction of Paxillin with LC3. Cell Rep 15:1660-72
Sweis, Randy F; Medved, Milica; Towey, Shannon et al. (2016) Dynamic Contrast-Enhanced Magnetic Resonance Imaging as a Pharmacodynamic Biomarker for Pazopanib in Metastatic Renal Carcinoma. Clin Genitourin Cancer :
Epel, Boris; Redler, Gage; Pelizzari, Charles et al. (2016) Approaching Oxygen-Guided Intensity-Modulated Radiation Therapy. Adv Exp Med Biol 876:185-93
Stein, Michelle M; Hrusch, Cara L; Gozdz, Justyna et al. (2016) Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children. N Engl J Med 375:411-21
Volden, Paul A; Skor, Maxwell N; Johnson, Marianna B et al. (2016) Mammary Adipose Tissue-Derived Lysophospholipids Promote Estrogen Receptor-Negative Mammary Epithelial Cell Proliferation. Cancer Prev Res (Phila) 9:367-78
Baron, Beverly W; Baron, Rebecca M; Baron, Joseph M (2016) The Relationship between RUVBL1 (Pontin, TIP49, NMP238) and BCL6 in Benign and Malignant Human Lymphoid Tissues. Biochem Biophys Rep 6:1-8
King, Andrea C; Hasin, Deborah; O'Connor, Sean J et al. (2016) A Prospective 5-Year Re-examination of Alcohol Response in Heavy Drinkers Progressing in Alcohol Use Disorder. Biol Psychiatry 79:489-98
Appelbe, Oliver K; Zhang, Qingbei; Pelizzari, Charles A et al. (2016) Image-Guided Radiotherapy Targets Macromolecules through Altering the Tumor Microenvironment. Mol Pharm 13:3457-3467
Morrison, Gladys; Lenkala, Divya; LaCroix, Bonnie et al. (2016) Utility of patient-derived lymphoblastoid cell lines as an ex vivo capecitabine sensitivity prediction model for breast cancer patients. Oncotarget 7:38359-38366

Showing the most recent 10 out of 534 publications