The Immunology and Cancer (IC) Program has been an integral part of the UCCCC for more than 25 years. It has 22 members from 6 Departments, and is supported by a total of $13,081,506 in annual peer reviewed funding (direct costs), of which $2,351,962 comes from the NCI. Over the previous funding period (encompassing 4 years). Program members have produced a total of 219 peer-reviewed cancer relevant publications, with 29% published in the highest impact journals;18% of these were interprogrammatic and 9% were intraprogrammatic. The broad goals of the Immunology and Cancer Program are to understand the interface between the host immune system and a malignant tumor and, ultimately, to manipulate that interaction to promote immune-mediated tumor destruction in patients with cancer. It is well established that tumors can express antigens that can be recognized by specific T cells or antibodies. Identifying the reasons why a given cancer is not eliminated spontaneously should highlight the major barriers that need to be overcome in order to restore immune control over the tumor. The research themes of the program focus on understanding the mechanisms of innate immune activation and productive antigen presentation;activation and differentiation of lymphocytes into effector/memory states;trafficking into inflamed target tissues and control of local inflammation;and overcoming mechanisms of peripheral immune tolerance. Basic concepts are integrated into mouse preclinical tumor models, and novel clinical trials are performed to capitalize on this new knowledge translationally, many in collaboration with clinical investigators outside of the Program. The clinical/translational effort is supported by several key Core Facilities, in particular the Human Immunologic Monitoring-cGMP Facility. By incorporating detailed scientific endpoint monitoring into clinical studies, new key information is generated that has led to the development of new hypothesess that are interrogated back in the laboratory. Thus, the Immunology and Cancer Program is a clear example of bi-directional translational research.

Public Health Relevance

A deeper understanding of the regulation of the host immune response against tumors has led to new immunotherapy approaches for the treatment of cancer. The recent FDA approval of ipilimumab for melanoma has generated a paradigm shift for the field. Furthering our basic knowledge in this arena and continuing the development of novel immunotherapies should translate into more durable clinical outcomes.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014599-39
Application #
8744828
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
39
Fiscal Year
2014
Total Cost
$15,782
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Feng, Christine H; Gerry, Emily; Chmura, Steven J et al. (2015) An image-guided study of setup reproducibility of postmastectomy breast cancer patients treated with inverse-planned intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys 91:58-64
Ming, Mei; Zhao, Baozhong; Shea, Christopher R et al. (2015) Loss of sirtuin 1 (SIRT1) disrupts skin barrier integrity and sensitizes mice to epicutaneous allergen challenge. J Allergy Clin Immunol 135:936-45.e4
Ming, Mei; Zhao, Baozhong; Qiang, Lei et al. (2015) Effect of immunosuppressants tacrolimus and mycophenolate mofetil on the keratinocyte UVB response. Photochem Photobiol 91:242-7
Shah, Palak; He, Yu-Ying (2015) Molecular regulation of UV-induced DNA repair. Photochem Photobiol 91:254-64
Ming, Mei; Han, Weinong; Zhao, Baozhong et al. (2014) SIRT6 promotes COX-2 expression and acts as an oncogene in skin cancer. Cancer Res 74:5925-33
Ramírez, Jacqueline; Kim, Tae Won; Liu, Wanqing et al. (2014) A pharmacogenetic study of aldehyde oxidase I in patients treated with XK469. Pharmacogenet Genomics 24:129-32
Rudra, Sonali; Al-Hallaq, Hania A; Feng, Christine et al. (2014) Effect of RTOG breast/chest wall guidelines on dose-volume histogram parameters. J Appl Clin Med Phys 15:4547
Weng, Liming; Ziliak, Dana; Lacroix, Bonnie et al. (2014) Integrative "omic" analysis for tamoxifen sensitivity through cell based models. PLoS One 9:e93420
Stumpf, Melanie; Zhou, Xuyu; Chikuma, Shunsuke et al. (2014) Tyrosine 201 of the cytoplasmic tail of CTLA-4 critically affects T regulatory cell suppressive function. Eur J Immunol 44:1737-46
Geeleher, Paul; Cox, Nancy J; Huang, R Stephanie (2014) Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol 15:R47

Showing the most recent 10 out of 354 publications